

June 30, 2022

Dr. LB Nye, Chief of Regional Programs Los Angeles Regional Water Quality Control Board 320 W. 4th St., Suite 200 Los Angeles, CA 90013

Subject: 2022 ANNUAL REPORT FOR THE VENTURA RIVER ALGAE TMDL

(RESOLUTION NO. R12-011)

Dear Dr. Nye:

The County of Ventura, Ventura County Watershed Protection District, Ojai Valley Sanitary District, City of Ojai, City of Ventura, California Department of Transportation, and the Ventura County Agricultural Irrigated Lands Group in Ventura River watershed (represented by the Farm Bureau of Ventura County) are pleased to submit for your review and consideration the 2022 Annual Report for the Ventura River and Tributaries Algae, Eutrophic Conditions, and Nutrients Total Maximum Daily Load, Resolution No. R12-011 (Ventura Algae TMDL).

All monitoring and reporting activities were completed in accordance with the approved Ventura Algae TMDL Comprehensive Monitoring Plan (CMP) for Receiving Water approved by Los Angeles Regional Water Quality Control Board on October 20, 2014, and revised monitoring and reporting program effective in January 2021. The CMP modifications include reduction from 5 to 3 algae sampling events during the dry season; the elimination of continuous water quality measurement events for the main-stem sampling locations during the first quarter (Jan-Mar) and fourth quarter (Oct-Dec); elimination of semiannual report submittals, and elimination of visual flow observations on the condition that alternative data is available and adequately represents the visual flow monitoring locations.

If you have any comments or questions regarding the attached document, please contact me at (805) 645-1382 or Ewelina.Mutkowska@ventura.org.

Sincerely,

Ewelina Mutkowska Senior Stormwater Manager Ventura County Public Works Agency Dr. LB Nye, Chief of Regional Programs June 30, 2022 Page 2 of 2

Jun Zhu, Los Angeles Regional Water Quality Control Board CC: Hope Sexton, Los Angeles Regional Water Quality Control Board Jeff Pratt, Ventura County Public Works Agency David Fleisch, Ventura County Watershed Protection District Glenn Shephard, Ventura County Watershed Protection District Arne Anselm, Ventura County Watershed Protection District Jeff Palmer, Ojai Valley Sanitary District Jodi Switzer, Farm Bureau of Ventura County Peter Shallenberger, City of Ventura Alma Quezada, City of Ojai Shirley Pak, California Department of Transportation Sunny Liem, California Department of Transportation Bhaskar Joshi, California Department of Transportation Joshua Gualco, California Department of Transportation Kiernan Brtalik, Rincon Consultants, Inc.

TOTAL MAXIMUM DAILY LOAD FOR ALGAE, EUTROPHIC CONDITIONS, AND NUTRIENTS IN VENTURA RIVER, INCLUDING THE ESTUARY, AND ITS TRIBUTARIES (VR ALGAE TMDL)

2022 ANNUAL REPORT

Submitted to

TMDL Responsible Agencies Implementing Receiving Water Monitoring Requirements:

City of Ojai
City of Ventura
County of Ventura
Ojai Valley Sanitary District
California Department of Transportation
Ventura County Agricultural Irrigated Lands Group
Ventura County Watershed Protection District

Prepared by:

Rincon Consultants, Inc.

TABLE OF CONTENTS

Executive	Summary	1
Backgroun	nd	2
Access Per	mission	4
Monthly M	Nonitoring	4
Mon	thly Field Results	5
	thly Nutrient Results	
	Season Monthly Algae Results	
•	ervations	
	L-EST	
	L-R1	
	L-R2	
	L-R3	
	L-R4	
	L-SA	
	L-CL	
	s Data Logging	
	Collection Equipment	
	inuous Water Quality Results	
Observation	ons and Lessons Learned	31
Key F	indings	31
Lesso	ons Learned	32
LIST OF	FIGURES	
Figure 1	Sampling Sites and Flow Observation Locations	3
Figure 2	2021-2022 Monthly Flow Monitoring	7
Figure 3	2015-2022 Monthly Flow Monitoring in the Lower Monitoring Area	8
Figure 4	2015-2022 Monthly Flow Monitoring in the Upper Monitoring Area	9
Figure 5	2021 - 2022 Monthly Monitoring – Dissolved Oxygen	11
Figure 6	2021 - 2022 Monthly Monitoring – pH	
Figure 7	2021 - 2022 Monthly Monitoring – Total Nitrogen	
Figure 8	2015 - 2022 Monthly Monitoring – Total Nitrogen, Lower Monitoring Area	14
Figure 9	2015 - 2022 Monthly Monitoring – Total Nitrogen, Upper Monitoring Area	15
Figure 10	2021 - 2022 Monthly Monitoring – Total Phosphorus	17
Figure 11	2015 - 2022 Monthly Monitoring – Total Phosphorus, Lower Monitoring Area	18
Figure 12	2015 - 2022 Monthly Monitoring – Total Phosphorus, Upper Monitoring Area	19
Figure 13	2021 Dry Season – Total Algal Biomass (Chlorophyll a) at Riverine Sites	20

Figure 14	2021 Dry Season – Macroalgal percent cover at Riverine Sites	21
Figure 15	2021 Dry Season – Estuary Chlorophyll a	23
Figure 16	2021 Dry Season – Estuary Macroalgal Percent Cover	24
Figure 17	2021-2022 Continuous Data Logging – PH	29
Figure 18	2021-2022 Continuous Data Logging – Dissolved Oxygen	30
LIST OF	Tables	
Table 1	May 2021 – April 2022 Water Quality Sample Collection Dates	5
Table 2	May 2021 – April 2022 Qualitative Flow Observations	6
Table 3	Dry Season Riverine Seasonal Averages	
Table 4	Dry Season Estuarine Monthly Observations and Seasonal Average	25
Table 5	Sonde Deployment Dates	27
Table 6	Exceedances by Site and Month	32
APPEND	DICES	
Appendix A	Monthly In Situ Parameters	

Appendix B Monthly Nutrient Data

Appendix C Dry Season Riverine Monthly Algal Biomass (Chlorophyll a) and Percent Macroalgal Cover

Appendix D Full Size Continuous Monitoring Charts

Appendix E Field Data Sheets

Appendix F Chain of Custodies and Laboratory Reports

EXECUTIVE SUMMARY

On behalf of the Ventura River Algae Total Maximum Daily Load (VR Algae TMDL) Responsible Agencies¹ (Responsible Agencies), the Ventura County Watershed Protection District (VCPWD) began sampling in accordance with the VR Algae TMDL Comprehensive Monitoring Plan (CMP) for Receiving Waters on January 14, 2015. Beginning in January 2020, the Responsible Agencies retained Rincon Consultants (Rincon) to implement this monitoring and reporting program. Aquatic Bioassay and Consulting Laboratories, and Larry Walker Associates, subconsultants to Rincon, have been assisting with completion of the work.

This monitoring report covers monitoring activities conducted in the Ventura River Estuary, Ventura River reaches 1 – 4, and in two main tributaries to the Ventura River from May 2021 through April 2022. This report includes field measurements and observations, continuous data logger results, and laboratory results from each site, including monthly flow measurements, nutrients, dissolved oxygen (DO), and pH; two-week continuous monitoring of DO and pH for each quarter; qualitative observations of flow along the Ventura River mainstem (flowing, ponded, or dry); and bi-monthly monitoring of algae during the dry season (May – September) for chlorophyll a (total algal and phytoplankton biomass) and macroalgal cover.

The Ventura River Watershed was subjected to increased environmental stresses over the past seven years of this monitoring program. Severe drought conditions existed during the first three years of monitoring activities, from 2015-2017. The entire watershed was heavily impacted by the Thomas Fire, which started on December 4, 2017, and continued through January 9, 2018, becoming the largest recorded wildfire in California history at that time. The fire burned most of the open space and forest lands in the Ventura River and other Ventura County watersheds, as well as orchards, homes, and other structures from Fillmore to Santa Barbara. Areas that did not burn (mainly developed areas within the Ojai Valley), were still subject to heavy ash deposition.

Drought conditions generally eased for Ventura County from 2018-2020, with wet seasons producing average or just below average rainfall. Drought conditions of increasing severity returned for the 2020-2021 water year and have continued through the 2021-2022 water year. According to qualitative flow observations taken at the Ventura River at Hwy 150, Santa Ana Boulevard, and Casitas Vista Road, flow remained discontinuous for the Ventura River from May 2021 until December 2021 storms restored continuous surface water flow. Flow became discontinuous again in January 2022 and remained discontinuous into the 2022 dry season. The San Antonio Creek monitoring site was dry from May 2021 through the December 2021 monitoring event. Flow returned by January 2022 after late December storms and remained until the site became ponded in April 2022. The Cañada Larga monitoring site was dry from May 2021 through the December 2021 monitoring event. Flow returned by January 2022 after late December storms and remained until the site became dry in April 2022. Flow at the Ventura River Reach 4 monitoring site became dry in August 2021. Flow returned by January 2022 after late December storms and remained for the duration of the 2022 wet season monitoring events. The monitoring sites at Ventura River Reach 3 and downstream were perennial. Flow at the Ventura River Reach 2 monitoring location and downstream locations includes treated discharge waters from the Ojai Valley Sanitary District's wastewater treatment plant.

The continuous water quality data and monthly *in situ* measurements collected through the year indicate that pH and DO follow similar trends at each monitoring location and are generally meeting the VR Algae TMDL numeric targets. However, during *in situ* measurement collection events, several monitoring locations had dissolved oxygen (DO) measurements that were below the daily minimum numeric target (7 mg/L), including TMDL-SA (San Antonio Creek), TMDL-R4 (Ventura River Reach 4), and TMDL-R1 (Ventura River Reach 1). Levels of DO below the numeric target were generally measured during periods of low flow and at the low points of the diurnal patterns at some sites. Continuous water quality monitoring measurements indicate that DO measurements at multiple monitoring locations fell below the daily minimum numeric target for DO for numerous 5-min intervals during the continuous monitoring events. In general, these continuous DO data exhibit a diurnal trend with excursions below the daily target occurring during the night and early morning. Neither *in situ*

¹ Responsible Agencies include the City of Ojai, City of Ventura, County of Ventura, Ojai Valley Sanitary District, California Department of Transportation, Ventura County Watershed Protection District, and Ventura County Agricultural Irrigated Lands Group

measurements nor continuous water quality measurements for pH exceeded the upper numeric target (8.5) during the 2021-2022 monitoring period. Continuous pH water quality measurements display a diurnal trend similar to DO where pH is highest during the day and lowest during the night.

During the 2021 dry season, all the sampleable sites exceeded the seasonal average numeric target for macroalgal cover (\leq 15% for the estuary and \leq 30% for the riverine sites) at least once. None of the sampleable riverine sites exceeded the riverine seasonal average chlorophyll a target of \leq 150 milligrams per square meter (mg/m²), and TMDL-Est exceeded the estuarine phytoplankton seasonal average chlorophyll a target of \leq 20 micrograms per liter (µg/L) in July 2021. In general, there was no clear relationship between algal cover and algal biomass at any of the sites.

Continuous water quality monitoring equipment performed much more reliably during this period than during the previous 2020-2021 monitoring period due to implementation of new equipment and enhanced security protocols. As discussed in previous monitoring reports, homeless persons and their encampments continue to present a high risk for vandalism and theft at numerous continuous monitoring locations. Monitoring equipment continues to be deployed in a manner intended to be less conspicuous, with enhanced housings for the data loggers, and a robust security chain and locking system for the Estuary site deployments. These measures appear to have been effective, as equipment was not stolen or vandalized during the 2021-2022 monitoring period.

Finally, the Responsible Agencies coordinated with the Los Angeles Regional Water Quality Control Board to modify the CMP effective in January 2021. These modifications include the reduction from 5 to 3 algae sampling events during the dry season; the elimination of continuous water quality measurement events for the main-stem sampling locations during the First and Fourth Quarters; elimination of visual flow observations on the condition that alternative data is available and adequately represents the visual flow monitoring locations, and discontinuation of Annual Dry Weather Reports.

BACKGROUND

The Water Quality Control Plan for the Los Angeles region was amended on December 6, 2012, to incorporate the TMDL for algae, eutrophic conditions, and nutrients in the Ventura River, including the Estuary, and its tributaries (VR Algae TMDL). The VR Algae TMDL became effective on June 28, 2013 and required the development and implementation of a CMP for receiving water monitoring to assess numeric attainment and measure in-stream nutrient concentrations. The CMP submitted by the Responsible Agencies was approved by the Los Angeles Regional Water Quality Control Board on October 20, 2014.

On November 18, 2014, the Ventura County Watershed Protection District (VCWPD) was retained by the Responsible Agencies to conduct monitoring in accordance with the CMP for up to five years. The CMP required sampling to begin no later than 90 days after the Los Angeles Regional Water Quality Control Board approved the CMP, and monitoring began on January 14, 2015. Beginning in January 2020, the Responsible Agencies retained Rincon to continue implementation of this monitoring and reporting program.

In January 2021, the Responsible Agencies coordinated with the Los Angeles Regional Water Quality Control Board to modify the CMP effective in January 2021. These modifications include the reduction from 5 to 3 algae sampling events during the dry season; the elimination of continuous water quality measurement events for the main-stem sampling locations during the First and Fourth Quarters; elimination of visual flow observations on the condition that alternative data is available and adequately represents the visual flow monitoring locations, and discontinuation of Dry Weather Reports due by December 31st each year.

Water quality monitoring is conducted at seven locations (**Figure 1**), including one site in the Ventura River Estuary (TMDL-Est), one site in each of the four Ventura River reaches identified in the VR Algae TMDL (TMDL-R1, TMDL-R2, TMDL-R3, and TMDL-R4), and in two main tributaries at Cañada Larga (TMDL-CL) and San Antonio Creek (TMDL-SA). Visual observations of river status and flow conditions are conducted at three locations on Ventura River at Casitas Vista Road Bridge (TMDL-CVR), Santa Ana Boulevard Bridge (TMDL-SAB), and State Route 150 bridge (TMDL-H150).

FIGURE 1 SAMPLING SITES AND FLOW OBSERVATION LOCATIONS

In accordance with the CMP, water quality monitoring is conducted for algal biomass, algal percent cover, nutrients (total and dissolved), in situ water quality parameters (dissolved oxygen, pH, temperature, electrical conductivity), and flow. Visual observations are made to document the status of the Estuary (open or closed), and the status of the river (flowing, ponded, or dry) at specific flow observation locations, which identifies wet/dry delineations and potential locations of groundwater upwelling. Monitoring for algal biomass and percent cover was conducted once per month in the dry season (May 1st to September 30th), and sampling for nutrients, *in situ* parameters, and flow is conducted monthly throughout the year. In addition, DO and pH are measured continuously for two-week periods on a quarterly basis; these measurements occur during the months of May and September in the second and third quarters in accordance with the CMP.

DO and pH are also measured continuously for two-week periods at three of the sites (TMDL-Est, TMDL-CL, and TMDL-SA) during the wet season in the fourth and first quarters². For the 2021-2022 monitoring period these measurements occurred during November 2021 and March 2022.

This report is a summary of monthly dry season monitoring data from May 2021 – September 2021, monthly wet season monitoring data from October 2021 – April 2022, and quarterly continuous data logging conducted in May 2021, September 2021, November 2021, and March 2022.

ACCESS PERMISSION

In 2015, to allow for continuity of monitoring site locations, five-year easements were sought from property owners where sampling sites are located for the fee of \$250 per term. The temporary easements expire five years from the date of approval (early 2020). Two property owners declined the five-year easement request but signed a revocable access permit instead. The sites affected by the permits are TMDL-R2 (which was moved upstream of the site listed in the CMP because the owner of that parcel denied the access request) and TMDL-SA directly above the San Antonio Creek confluence with the Ventura River. TMDL-R2 was sampled approximately 200 meters upstream of the Ojai Valley Sanitary District site (OVSD-R5) for monthly monitoring and approximately 300 meters upstream for continuous monitoring to be entirely on permitted property.

MONTHLY MONITORING

Monthly monitoring was conducted in accordance with the CMP, which included collection of nutrient grab samples, *in situ* parameters, and flow during the wet and dry season, and collection of algal biomass samples and macroalgae percent cover during the dry season. Monitoring event dates and collecting agency details are presented in **Table 1**. Monthly *in situ* parameters for each site are presented in **Appendix A**.

² With approval from the Los Angeles Regional Water Quality Control Board, Quarter **4** and Quarter **1** Sonde deployments were required only at TMDL-Est, TMD-SA, and TMDL-CL.

TABLE 1 MAY 2021 – APRIL 2022 WATER QUALITY SAMPLE COLLECTION DATES

Sample Month	Season	TMDL-Est	TMDL-R1	TMDL-R2	TMDL-R3	TMDL-R4	TMDL-SA	TMDL-CL
MAY 2021	Dry	5/13	5/13	5/13	5/12	5/12	5/12 (Mostly Dry)	5/12 (Dry)
JUN 2021	Dry	6/9	6/9	6/9	6/9	6/9	6/9 (Mostly Dry)	6/9 (Dry)
JUL 2021	Dry	7/15	7/15	7/15	7/14	7/14	7/14 (Mostly Dry)	7/14 (Dry)
AUG 2021	Dry	8/11	8/11	8/11	8/11	8/11	8/11 (Mostly Dry)	8/11 (Dry)
SEP 2021	Dry	9/8	9/9	9/9	9/8	9/8 (Mostly Dry)	9/8 (Mostly Dry)	9/8 (Dry)
OCT 2021	Wet	10/14	10/14	10/14	10/14	10/14 (Dry)	10/14 (Dry)	10/14 (Dry)
NOV 2021	Wet	11/10	11/10	11/10	11/10	11/10 (Dry)	11/10 (Dry)	11/10 (Dry)
DEC 2021	Wet	12/8	12/8	12/8	12/8	12/8 (Dry)	12/8 (Dry)	12/8 (Dry)
JAN 2022	Wet	1/12	1/12	1/12	1/12	1/12	1/12	1/12
FEB 2022	Wet	2/9	2/9	2/9	2/9	2/9	2/9	2/9
MAR 2022	Wet	3/9	3/9	3/9	3/9	3/9	3/9	3/9
APR 2022	Wet	4/13	4/13	4/13	4/13	4/13	4/13	4/13 (Mostly Dry)

Table Notes:

Grey shading indicates dry or mostly dry conditions.

MONTHLY FIELD RESULTS

FLOW

Flow presence/absence observations (flowing, ponded, or dry) are provided for the visual observation monitoring locations in **Table 2**. Due to low rainfall during the 2021 wet season, surface flow was not continuous from the upper monitoring area to the estuary for the Ventura River, San Antonio Creek, and Cañada Larga for any of the 2021 dry season. Surface flow became continuous from the upper monitoring area through the estuary after December 2021 storms and became discontinuous in the Ventura River at Santa Ana Boulevard in January 2022 and at Highway 150 in February 2022. In addition, the estuary berm was closed for the June through July and September through December monitoring events.

[&]quot;Mostly Dry" indicates that water was present at the monitoring site, but flow was insufficient to meet algae sampling protocols so monthly monitoring parameters were sampled but algae monitoring/collection could not be conducted.

[&]quot;Dry" sites had insufficient water present for any sampling to take place due to absence of flow.

TABLE 2 MAY 2021 – APRIL 2022 QUALITATIVE FLOW OBSERVATIONS

Date	Ventura River at Hwy 150	Ventura River at Santa Ana Blvd	Ventura River at Casitas Vista Road
5/27/2021	Dry	Dry	Flowing
6/24/2021	Dry	Dry	Flowing
7/26/2021	Dry	Dry	Flowing
8/25/2021	Dry	Dry	Flowing
9/29/2021	Dry	Dry	Flowing
10/27/2021	Dry	Dry	Flowing
11/21/2021	Dry	Ponded	Flowing
12/15/2021	Flowing	Flowing	Flowing
1/27/2022	Flowing	Dry	Flowing
2/24/2022	Dry	Dry	Flowing
3/30/2022	Dry	Dry	Flowing
4/27/2022	Dry	Dry	Flowing

Monthly flow data for the water quality monitoring locations are presented in **Figure 2**. As seen in this chart, flow typically follows a cyclical trend of elevated flow during the wet season with a gradual decline into the dry season, followed by an increase as storm events deliver precipitation in the watershed. However, during the 2021-2022 wet season (October to April), below-average rainfall resulted in a subdued increase in river discharge. While instream flow increased due to the December 2021 storm events, there were no major flow increases for the remainder of the 2021-2022 wet season. The increase at the flow monitoring locations corresponds with measurable precipitation at the Ojai-County Fire Station (Site ID 030D) in December 2021.³ Less than 0.1 inches of precipitation was recorded in January 2022, no precipitation was recorded in February 2022, and less than 2 inches of precipitation was recorded in March 2022 at the Ojai-County Fire Station. Note that some variability has been seen during the dry season, potential causes of which may include surface/subsurface flow, groundwater interaction, geology and infiltration rates, antecedent moisture, agricultural and urban inputs, and extractions.

Figure 3 and **Figure 4** provide additional context to the flow regime at the water quality monitoring locations over the past six years and present monthly instantaneous flow measurements (primary y-axis) compared to monthly rainfall totals measured at the Ojai-County Fire Station (secondary y-axis).⁴ As illustrated in these figures, 2021-22 wet season flow was of a similar magnitude to flows in 2017 following the end of the 2011-2017 drought period.

³ Data download available here: https://www.vcwatershed.net/hydrodata/php/getstation.php?siteid=030D#rain_hour

⁴ Note that river discharge responds more to rain in the upper watershed, where precipitation depths are much higher than those recorded at Site ID 030D. The rainfall data is presented here as an indicator of the differences.

Figure Notes:

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded).

Sites TMDL-R1, TMDL-R2, and TMDL-R3 are perennial. Flow at TMDL-R2 is a combination of flow in the Ventura River downstream of TMDL-R3 and discharge from the Ojai Valley Sanitary District's wastewater treatment plant.

FIGURE 3 2015-2022 MONTHLY FLOW MONITORING IN THE LOWER MONITORING AREA

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded). Grey bars indicate dry season (May – September).

Jul-15

Apr-15

Jan-16

Jul-16 Oct-16 Jan-17

Jul-17
Oct-17
Jan-18
Jul-18
Oct-18
Jan-19
Jul-19
Jul-19

---TMDL-R2

Apr-17

Apr-16

TMDL-R1

Oct-19

TMDL-R3

Jan-20

Apr-20 Jul-20 Oct-20

Jan-21 Apr-21 Jul-21 Oct-21

Rainfall (030D)

50

Jan-22

Apr-22

FIGURE 4 2015-2022 MONTHLY FLOW MONITORING IN THE UPPER MONITORING AREA

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded). Grey bars indicate dry season (May – September).

DISSOLVED OXYGEN

During the 2021-2022 monitoring period, instantaneous DO concentrations measured during monthly sampling ranged from 5.18–16.3 mg/L (**Figure 5**). The minimum (5.18 mg/L) was recorded at TMDL-SA during the April 2022 sampling event at 8:30 am⁵, the maximum (16.30 mg/L) was recorded at TMDL-Est during the November sampling event at 11:10 am. Instantaneous DO concentrations below the target minimum (7 mg/L) were recorded at five of the seven sites (TMDL-SA, TMDL-Est, TMDL-R1, TMDL-R2, and TMDL-R4), and most of these concentrations were measured between 8:00 – 10:00 am and a majority of the exceedances occurred at TMDL-R4. Low levels of DO tend to occur during periods of low flow, possibly due to the ponding (and potential stagnation) of water observed upstream and/or at the measurement location. In addition, DO is typically low in the early morning due to bacterial respiration and increases during the day as photosynthesis increases.

РΗ

During the 2021-2022 monitoring period, pH measurements taken during monthly sampling events ranged from 7.04 - 8.6 (Figure 6). The minimum (7.04) was recorded at TMDL-R4 during the June 2021 sampling event at 9:00 am, and the maximum (8.6) was recorded at TMDL-R3 during the December 2021 sampling event at 11:59 am. With the exception of TMDL-Est in March 2022 and TMDL-SA in December 2021, instantaneous pH measurements were within the pH target range (6.5 – 8.5) for the duration of the monitoring period.

MONTHLY NUTRIENT RESULTS

Nutrient levels show variation between sites, seasons, and years. Charts of results for total nitrogen and total phosphorus from 2021-2022 and the previous seven years (2015-2022) are included below for comparison.

NITROGEN

During the 2021-2022 monitoring period, concentrations of total nitrogen above the laboratory reporting limit (0.3 mg/L) ranged from 0.317 – 4.97 mg/L (**Figure 7**). The lowest concentrations, including results below the reporting limit, occurred at TMDL-R3. The maximum concentration occurred during the March 2022 sampling event at TMDL-R3. TMDL-Est had the lowest average total nitrogen concentration, and TMDL-R1 and TMDL-R2 had the highest average concentrations. All results were below the numeric objective of 10 mg/L for the Ventura River Reaches. A nitrogen summary table showing all results from the 2021-2022 monthly data is provided as **Appendix B**.

To provide context as to how these results compare to previous monitoring periods, **Figure 8** and **Figure 9** present the past seven years of nitrogen monitoring results. Total nitrogen concentrations in the 2021-2022 monitoring period were of a similar magnitude to results obtained in the 2020-2021 monitoring period, and of a similar magnitude to results obtained in the 2017-2018 monitoring period. The trends indicate that nitrogen concentrations at all monitoring locations have historically (since monitoring began in 2015) demonstrated greater seasonal variation, and in general had higher concentrations during dry years. TMDL-R3 is an exception to this trend with low concentrations throughout 2015, 2016, 2018, 2020, and 2021 dry seasons. These results appear to be associated with prolonged dry periods, followed by sporadic rain events, as displayed by the low concentrations during the dry seasons and the spikes of increased concentrations during the wet seasons.

⁵ Note that this sample at TMDL-SA during the April 2022 event occurred in ponded conditions.

FIGURE 5 2021 - 2022 MONTHLY MONITORING - DISSOLVED OXYGEN

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded).

Figure Notes:

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded).

FIGURE 7 2021 - 2022 MONTHLY MONITORING – TOTAL NITROGEN

Figure Notes:

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded)

FIGURE 8 2015 - 2022 MONTHLY MONITORING – TOTAL NITROGEN, LOWER MONITORING AREA

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded). Grey bars indicate dry season (May – September).

FIGURE 9 2015 - 2022 MONTHLY MONITORING – TOTAL NITROGEN, UPPER MONITORING AREA

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded). Grey bars indicate dry season (May – September).

PHOSPHORUS

During the 2021-2022 monitoring period, concentrations of total phosphorus above the minimum detection limit (0.016 mg/L) ranged from 0.017 mg/L - 0.291 mg/L (**Figure 10**). The lowest concentrations occurred throughout the monitoring period at TMDL-CL, TMDL-SA, TMDL-R4, and TMDL-R3. The maximum concentration occurred during the September 2021 sampling event at TMDL-R1, which had an annual average of 0.094 mg/L.

Figure 11 and Figure 12 present the past six years of total phosphorous monitoring results, which illustrate greater seasonal variation during periods of drought, especially for TMDL-R1 and TMDL-R2. Figure 12 shows that the total phosphorous monitoring results are especially variable from 2015 to 2018 but somewhat stabilize thereafter. As with the long-term data assessment for nitrogen presented above, total phosphorus concentrations for the 2021-2022 monitoring period were of a similar magnitude to concentrations during the 2020-2021 monitoring period, which were generally higher and varied more between sites than in 2019-2020, though concentrations are not as high as during the drought period ending in 2018. Phosphorus concentrations increased at TMDL-R2 following the rain season from 2015 through 2018, but such elevated concentrations have not been observed since early 2019.

DRY SEASON MONTHLY ALGAE RESULTS

The 2021 dry season sampling was conducted three times, in May, July, and September, in accordance with the revised CMP. Sampleable conditions were present for each event at TMDL-R2 and TMDL-R3, while TMDL-R1 was not sampleable during the May event and TMDL-R4 was not sampleable during the September event. Conditions encountered at TMDL-R1 during the May sampling event featured deep pools and eroded banks that kept samplers from being able to collect measurements, and TMDL-R4 was dry during September 2021.

RIVERINE SITES

In accordance with the VR Algae TMDL and CMP, algae sampling was conducted using the Surface Water Ambient Monitoring Program (SWAMP) protocol for riverine sites. This includes percent cover estimates of both suspended (floating) and attached (land-based) algae, and total algal biomass [measured as chlorophyll a (mg/m²)]. Macroalgal percent cover estimates only include living algae. Riverine total algal biomass concentrations are shown in **Figure 13** and macroalgal percent cover is displayed in **Figure 14**.

Total algal biomass (measured as chlorophyll a) ranged from 11.2 to 109 mg/m² across the four riverine sites where it could be measured (**Figure 13**). The maximum (109 mg/m²) was recorded at TMDL-R4 during the July 2021 sampling event, and the minimum (11.2 mg/m²) was recorded at TMDL-R1 during the July 2021 sampling event. Seasonal average chlorophyll a concentrations (**Table 3**) were below the target seasonal average (150 mg/m²) for all sampleable sites.

Macroalgal percent cover ranged from 14% to 76 % across the four riverine sites where it could be measured (**Figure 14**). The minimum (14%) occurred at TMDL-R1 during the July 2021 sampling event, and the maximum (76%) occurred at TMDL-R4 during the July 2021 sampling event. The lowest percent cover observations occurred during the September 2021 sampling event for TMDL-R2 and TMDL-R3, while TMDL-R4 was lowest in May and TMDL-R1 was lowest in July. Seasonal average percent coverage was below the target seasonal average (≤30%) at TMDL-R1 and TMDL-R3, and above the target seasonal average at TMDL-R2 and TMDL-R4. All four sites were below the numeric target seasonal average of 150 mg/m² (**Table 3**).

FIGURE 10 2021 - 2022 MONTHLY MONITORING - TOTAL PHOSPHORUS

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded).

FIGURE 11 2015 - 2022 MONTHLY MONITORING – TOTAL PHOSPHORUS, LOWER MONITORING AREA

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded). Grey bars indicate dry season (May – September).

FIGURE 12 2015 - 2022 MONTHLY MONITORING – TOTAL PHOSPHORUS, UPPER MONITORING AREA

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded). Grey bars indicate dry season (May – September).

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded).

The VR Algae TMDL seasonal average numeric target of 150 mg/m² is plotted for reference, and seasonal averages for each site are presented in **Table 3**.

FIGURE 14 2021 DRY SEASON – MACROALGAL PERCENT COVER AT RIVERINE SITES

Missing data points indicate that the measurement could not be taken due to flow conditions (e.g., the site was dry or ponded).

The VR Algae TMDL seasonal average numeric target of \leq 30% is plotted for reference, and seasonal averages for each site are presented in **Table 3**.

Seasonal averages and comparison to exceedances for both total algal biomass and macroalgal percent cover at the riverine water quality monitoring locations are summarized in **Table 3.** A detailed results table for dry season monthly algae monitoring is provided in **Appendix C**.

TABLE 3 DRY SEASON RIVERINE SEASONAL AVERAGES AND NUMERIC TARGETS

Site	Seasonal Average Biomass (mg/m² chlorophyll a)	Seasonal Average Macroalgal Cover (%)		
	Numeric Target Seasonal Average 150 mg/m²	Numeric Target Seasonal Average ≤ 30%		
TMDL-R1	35.0	23.8 ¹		
TMDL-R2	39.4	37.0		
TMDL-R3	60.1	28.1		
TMDL-R4	98.8	74.2 ²		

Table Notes:

Bolded averages exceed numeric targets.

- 1. Sampling at TMDL-R1 was not possible in May 2021, therefore this value represents the average of July 2021 and September 2021.
- 2. Sampling at TMDL-R4 was not possible in September 2021, therefore this value represents average of May 2021 and July 2021.

ESTUARINE SITE

In accordance with the VR Algae TMDL and CMP, algae sampling was conducted using the Southern California Bight Regional Monitoring Program: Estuarine Eutrophication (Bight 2008) protocol for the estuary water quality monitoring location. Per this protocol, estuarine phytoplankton biomass [measured as chlorophyll a (μ g/L)] samples are collected from the water column. Macroalgal percent cover is measured on the shoreline approximately three quarters of the distance upslope from the water's edge at the mean lowest low water line (MLLW) to approximately 1 to 2 feet above the MLLW. Floating algae is measured to a depth of 0.3 meters, and all measurements include dead, desiccated, fresh, and intermediate algae. Estuarine phytoplankton biomass concentrations are displayed in **Figure 15** and macroalgal percent cover results are displayed in **Figure 16**.

Phytoplankton biomass (measured as chlorophyll a) ranged from 8.01 μ g/L – 45.4 μ g/L at the estuary water quality monitoring location (**Figure 15**). The maximum occurred during the July sampling event and the minimum during the May sampling event. The phytoplankton biomass seasonal average at TMDL-Est (22.87 μ g/L) was above the numeric target (20 μ g/L) (**Table 4**).

Attached macroalgal percent cover ranged from 14% - 26% and floating macroalgal percent cover ranged from <1% - 17% (Figure 16). Attached macroalgal cover was above the target seasonal average ($\le15\%$) during the May and July sampling events and just below the numeric target in September (14.5%). Floating macroalgal percent cover was slightly above the target seasonal average (17%) during the July sampling event. The seasonal average for attached macroalgal percent cover at TMDL-Est (19%) was above the numeric target and the seasonal average for floating macroalgal percent cover (8%) was below the numeric target (Table 4).

FIGURE 15 2021 DRY SEASON – ESTUARY CHLOROPHYLL A

The VR Algae TMDL seasonal average numeric target (20 μg/L chlorophyll a) is plotted for reference, and seasonal averages for each site are presented in Table 4.

FIGURE 16 2021 DRY SEASON – ESTUARY MACROALGAL PERCENT COVER

The VR Algae TMDL seasonal average numeric target (≤ 15 % coverage) is plotted for reference, and seasonal averages for each site are presented in Table 4.

TABLE 4 DRY SEASON ESTUARINE MONTHLY OBSERVATIONS AND SEASONAL AVERAGE

Site	Date	Phytoplankton Biomass Chlorophyll <i>α</i> (μg/L)	Floating Cover (%)	Attached Macroalgal Cover (%)	Total Macroalgal Cover ⁶ (%)
Seasonal Ave	erage Numeric Target	20 μg/L	Not applicable	Not applicable	≤ 15
TMDL-Est	May 2021	8.01	0.5	26.3	18.9
TMDL-Est	July 2021	45.4	16.7	16.5	16.5
TMDL-Est	Sept. 2021	15.2	7.8	14.5	12.6
	Seasonal Average	22.87	8.3	19.0	16.0

Table Notes:

Bolded averages exceed numeric targets.

FIELD OBSERVATIONS

TMDL-EST

Water level in the estuary fluctuates with tides and river flow, which also affects berm status and estuary shape. The estuary berm was closed during the monitoring events in June and July 2021 and September through December 2021, and open during the May 2021, August 2021, and January 2022 through April 2022 monitoring events, with flow exiting through the east end. The berm appeared to have been altered by humans in the month of July, which likely indicates attempts to open the estuary mouth. Dogs off leash and people recreating in the lagoon are frequently seen, and birds (especially gulls) are commonly present. In addition to the frequently seen birds within the estuary, large fish were observed jumping near the sampling location at the closed berm during the September monitoring event. Academic researchers were observed in the estuary installing continuous water quality sonde equipment during the May monitoring event. Homeless encampments were observed approximately 100 meters from the sampling area during the June monitoring event.

TMDL-R1

The lower section of this reach is frequently littered with washing materials and containers (e.g., soap, shampoo, laundry detergent, clothing, towels) and is commonly known as the "laundry site" due to its frequent use for that purpose by the homeless in the area. The Ventura Land Trust removes the items when it sees them and posts signs, and also speaks with people directly about the hazards and legality of washing in the stream. The human use near this monitoring location is heavier in the summer months. The Ventura Land Trust conducts weekly trash removal and periodic vegetation removal in the area, and the California Department of Parks and Recreation with the California Department of Forestry and Fire Protection conducted *Arundo donax* (Arundo) removal in the area from the fall of 2021 through the winter of 2022. There were several piles of encampment litter (e.g., discarded clothing, sleeping gear, food containers) along the access trail to the east of the river, as well as encampment litter in the river.

⁶ Total Macroalgal Cover is determined by averaging results from 12 quadrats of floating macroalgae and 30 quadrats of attached macroalgae per sampling event (four quadrats of floating and ten quadrats of attached, at three transects at each monitoring location).

TMDL-R2

One large homeless camp was present on the private property in this area. The camp was located on the east bank among the Arundo and spans from transect "B" to transect "H", as delineated by the dry season algae sampling protocol. Evidence of washing (e.g., soap, shampoo bottles) are frequently seen near the water. Additionally, miscellaneous encampment litter was observed in the river. Some rocks have been moved to create deeper pools for the camp. Additionally, overgrown Arundo on the left bank occasionally made measurements on that bank infeasible.

TMDL-R3

The channel splits at transect "H" and the left channel was monitored during every monitoring event of the dry season. Debris from the 2020 wet season blocked the original access path so flow and water monitoring occurred downstream of the deep pool to allow crew safer access. Algae was sampled upstream of the pool in the same area as previous years.

TMDL-R4

Monitoring was conducted on the west bank and downstream of previous dry season locations due to the change in the path of the river. Additionally, the "A" through "J" transects were shortened by approximately 10 meters due to dense Arundo. The streambed was dry during the September 2021 monitoring event.

TMDL-SA

While a natural spring tends to keep the area directly above the confluence with the Ventura River wet for most or all of the year, transect "A" was observed to be ponded during the May through July 2021 monitoring events and completely dry during the August through December 2021 monitoring events. Surface flow returned for the January through March 2022 monitoring events. The site was observed to be ponded during the April 2022 monitoring event.

TMDL-CL

The monitoring location was dry for most of the monitoring period, exhibiting edaphic conditions without any discernable soil moisture difference between the stream bed and the nearby soils above the banks. Surface flow returned for the January through March 2022 monitoring events, but the site was dry again for the April 2022 monitoring event.

CONTINUOUS DATA LOGGING

In accordance with the VR Algae TMDL and CMP, DO and pH were measured continuously for two-week periods on a quarterly basis during the months of May, September, November and March. With approval from the Los Angeles Regional Water Quality Control Board, Quarter 4 and Quarter 1 sonde deployments occurred only at TMDL-Est, TMD-SA, and TMDL-CL This section provides an overview of the equipment used to measure these parameters and presents results for the 2021-2022 monitoring period.

DATA COLLECTION EQUIPMENT

Continuous water quality measurements have been collected over the past seven years using Hydrolab HL4 water quality data sondes. The HL4 can accurately measure and log DO and pH, as well as conductivity and temperature within a self-contained package. An adjustment for salinity is required for DO measurements in saltwater, which the HL4 completes internally utilizing its conductivity sensor. In 2020, following theft of a unit from the Estuary, DO and pH Hobo sondes were purchased to replace the missing equipment. This equipment was deployed only in freshwater monitoring locations (because

⁷ Dry season algae sampling protocols are to divide each monitoring location reach into transects "A" through "J", omitting "I" to avoid transcription errors.

of the need for conductivity compensation for saline environments) and an HL4 from another location was swapped. During a calibration in 2021, an existing HL4 failed to accurately calibrate, and repair costs exceeded the replacement cost of a hobo DO and pH array, which were purchased and deployed to provide continuous monitoring capabilities. As discussed in previous reports, the sampling team anticipated the continued replacement of the older HL4 equipment with HOBO sondes based on cost and performance equivalence. In April 2022, four additional HOBO sonde arrays, including a conductivity sensor to deploy at TMDL-Est, were purchased to completely phase out the HL4s.

Data sondes are vulnerable to vandalism and theft, which has occurred at the estuary monitoring location (TMDL-Est) over the seven-year period of this monitoring program. Two HL4 data sondes have been stolen from this location, including from an underwater and mid-channel anchored location and a hidden shore anchored location. Field staff have taken extensive measures to hide and secure equipment at inconspicuous locations using anti-theft housings, chains, and cables. No equipment was stolen or vandalized during the 2021-2022 monitoring period, and the combination of newer Hobo sondes and remaining HL4s worked well to obtain the needed data at the sampleable sites, with few issues. However, theft and vandalism will continue to be an issue at these water quality monitoring locations due to the homeless community presence.

CONTINUOUS WATER QUALITY RESULTS

Continuous water quality monitoring for pH and DO was conducted in accordance with the VR Algae TMDL and CMP in May, September, and November 2021, and March 2022. **Table 5** presents deployment dates and provides general notes related to each deployment where applicable. As compared to past monitoring periods, the 2021-2022 monitoring period saw better performance from the mix of newer equipment and enhanced security procedures at TMDL-Est. Continuous water quality monitoring data for pH and DO measured during each quarter is presented as **Figure 17** and **Figure 18**, respectively (full size charts are provided as **Appendix D**). These figures also show instantaneous measurements of pH and DO taken at deployment, mid-monitoring, and retrieval to provide quality assurance and quality checks of the continuous data readings. Dissolved Oxygen is heavily influenced by flow, sedimentation, and algae presence, and it is noted when the data is suspected to have been influenced by these factors.

TABLE 5 SONDE DEPLOYMENT DATES

Site	2021 Quarter 2 (May¹)	2021 Quarter 3 (September¹)	2021 Quarter 4 (November)	2022 Quarter 1 (March)
TMDL-Est	5/10/2021 – 5/27/2021	9/23/2021 – 10/8/2021 ³	11/5/2021 – 11/23/2021	3/8/2022 – 3/23/20224
TMDL-R1	5/10/2021 – 5/27/2021 ²	9/23/2021 – 10/8/2021	Not Deployed⁵	Not Deployed⁵
TMDL-R2	5/10/2021 – 5/27/2021	9/23/2021 – 10/8/2021	Not Deployed⁵	Not Deployed⁵
TMDL-R3	5/10/2021 – 5/27/2021	9/23/2021 – 10/8/2021	Not Deployed⁵	Not Deployed⁵
TMDL-R4	5/10/2021 – 5/27/2021	9/23/2021 – 10/8/2021	Not Deployed⁵	Not Deployed⁵
TMDL-SA	DRY	DRY	11/5/2021 – 11/23/2021	3/8/2022 – 3/23/2022
TMDL-CL	DRY	DRY	11/5/2021 – 11/23/2021	3/8/2022 – 3/23/2022

Table Notes:

- 1. Month required by TMDL.
- 2. The DO sensor appears to have become impacted by low flow, sedimentation, bio-fouled or otherwise disturbed on 5/18 and data after this date are suspect
- 3. The DO sensor appears to have become lodged at or below the sediment in the estuary, or otherwise disturbed on 9/25 and data after this date are suspect
- 4. The DO sensor appears to have become lodged at or below the sediment in the estuary, or otherwise disturbed on 3/20 and data after this date are suspect
- 5. With approval from the Los Angeles Regional Water Quality Control Board, Quarter 4 and Quarter 1 Sonde deployments were required only at TMDL-Est, TMD-SA, and TMDL-CL.

In May 2021, five sondes were installed at five water quality monitoring locations for continuous data logging. Sondes were not installed at TMDL-SA and TMD-CL due to dry conditions. The sondes were installed before the logging program began on May 10, 2021 and were removed after two weeks of logging. The TMDL-R1 DO sensor appears to have become impacted by low flow, sedimentation, bio-fouled or otherwise disturbed on May 18th after which DO measurements sharply declined, and DO data collected after this date at TMDL-R1 are suspect.

In September 2021, sondes were installed at five water quality monitoring locations for continuous data logging. Sondes were not installed at TMDL-SA and TMD-CL due to dry conditions. The sondes were installed before the logging program began on September 23, 2021 and were removed after two weeks of logging. The TMDL-Est DO sensor appears to have become lodged at or below the sediment in the estuary, or otherwise disturbed on September 25th after which DO measurements sharply declined to zero, and DO data collected after this date at TMDL-Est are suspect.

In November 2021, sondes were installed at TMDL-Est for continuous data logging. With approval from the Los Angeles Regional Water Quality Control Board, First Quarter deployments were required only at TMDL-Est, TMD-SA, and TMDL-CL. Sondes were not installed at TMDL-SA and TMD-CL due to dry conditions. The sondes were installed before the logging program began on November 5, 2021 and were removed after two weeks of data collection. Instantaneous measurements taken at deployment and retrieval confirm the DO decrease seen over the two-week monitoring period. Measurements taken mid-monitoring period for TMDL-Est were taken off of a nearby bridge rather than at the place of deployment and are likely not representative of the sonde measurement point at depth.

In March 2022, sondes were installed at three water quality monitoring locations for continuous data logging. With approval from the Los Angeles Regional Water Quality Control Board, Second Quarter sonde deployments were required only at TMDL-Est, TMD-SA, and TMDL-CL. The sondes were installed before the logging program began on March 8, 2022 and were removed after two weeks of data collection. The TMDL-Est DO sensor appears to have become lodged at or below the sediment in the estuary, or otherwise disturbed on March 20th, after which DO measurements sharply declined to zero, and DO data collected after this date at TMDL-Est are suspect. TMDL-SA was ponded during the retrieval of the sonde, which likely contributed to decreased DO readings at the site during the later half of the record.

FIGURE 17 2021-2022 CONTINUOUS DATA LOGGING – PH

Ventura River Algae TMDL Page 29 June 2022

FIGURE 18 2021-2022 CONTINUOUS DATA LOGGING - DISSOLVED OXYGEN⁸

June 2022

⁸ The DO sensor for TMDL-R1 appears to have become impacted by low flow, sedimentation, bio-fouled or otherwise disturbed on 5/18 and data after this date are suspect; the DO sensor for TMDL-Est appears to have become lodged at or below the sediment in the estuary, bio-fouled or otherwise disturbed during the September 2021 deployment on 9/25 and during the March 2022 event on 3/20 and data after these dates are suspect; and TMDL-SA was observed to be ponded during sonde retrieval in March 2022, which likely contributed to decreasing DO levels at the site.

OBSERVATIONS AND LESSONS LEARNED

This section presents a summary of key monitoring results including the frequency of exceedances for VR Algae TMDL numeric targets and general data trends and observations. Important lessons learned during the 2021-2022 monitoring period are discussed to further inform future monitoring program implementation and management decisions. Field data sheets are provided as **Appendix E** and chain of custody forms and laboratory results are included as **Appendix F**.

KEY FINDINGS

The Ventura River watershed experienced developing drought conditions during the 2020-2021 and 2021-2022 monitoring periods. Over the past seven years, flows were generally observed to increase starting in the 2017 rainy season with higher flow rates through 2018, 2019, and 2020. In 2021, rainfall was not sufficient to restore continuous flow in the Ventura River, and peak flows were correspondingly diminished in comparison to the 2019-2020 monitoring period. While rainfall in 2022 was higher than rainfall in 2021, precipitation was not enough to restore flow conditions from the 2018-2020 period. Data show that total nitrogen concentrations are higher during monthly sampling events in dry years and demonstrate greater variation between monitoring locations than during wetter years.

A summary of exceedances is provided in **Table 6**, which considers monthly grab sample and continuous water quality monitoring results. While pH measurements at two monitoring locations (TMDL-Est and TMDL-R3,) exceeded VR TMDL numeric targets during several monthly grab sample monitoring events, continuous water quality monitoring measurements coupled with monthly *in situ* measurements indicate that pH is primarily meeting the VR Algae TMDL numeric targets. An exceedance of the upper numeric target for pH (8.5) occurred in June 2021 at TMDL-Est, where the highest measurements was 8.63. While numeric target exceedances during continuous monitoring events for DO (<7 mg/L) occurred at all seven sites, numeric target exceedances during monthly monitoring events for DO occurred only at TMDL-SA, where the minimum measurement was 5.18 (April 2022), and was likely low due to ponded conditions. Some of the DO exceedances during the continuous monitoring events may have been due to fouling of the sensor. In addition, DO is typically low in the early morning and increases during the day, which may explain low measurements during monthly grab sampling events. This is observed in the continuous water quality monitoring data, which illustrates daily variation.

In February 2021, the Los Angeles Regional Water Quality Control Board approved a reduction in the frequency of dry season algal monitoring events from 5-months (May through September) to 3-months (May, July, and September). This change in the monitoring program was based on a statistical comparison of 5-month and 3-month seasonal averages for algal biomass and macroalgal cover over the first five years of the monitoring program and was implemented during the May-September 2021 dry season.

TABLE 6 EXCEEDANCES BY SITE AND MONTH

Season	Sample Month	TMDL-Est	TMDL-R1	TMDL-R2	TMDL-R3	TMDL-R4	TMDL-SA	TMDL-CL
Dry Season	May 2021	DO (c), MC	DO (c)	MC	MC, DO (c)	DO (c, m), MC	Dry	Dry
2021	Jun 2021	-	-	-	-	DO (m)	Dry	Dry
	Jul 2021	MC, Chl a(m), DO (m)	-	DO (m)	MC	DO (m), MC	Dry	Dry
	Aug 2021	-	-	-	-	DO (m)	Dry	Dry
	Sept 2021	DO (c)	MC	-	-	Dry	Dry	Dry
	Seasonal Average	Chl a, MC	-	MC	-	MC	Dry	Dry
Wet	Oct 2021	DO (c)	-	-	-	-	Dry	Dry
Season 2021/2022	Nov 2021	DO (c)	-	-	-	-	Dry	Dry
2021/2022	Dec 2021	pH (m)	-	-	pH (m)	-	Dry	Dry
	Jan 2022	-	-	-	-	DO (m)	-	-
	Feb 2022	-	-	-	-	DO (m)	-	-
	Mar 2022	DO (c)	-	-	-	DO (m)	DO (c)	DO (c)
	Apr 2022	DO (m)	DO (m)	-	-	DO (m)	DO (m)	Dry

Table Notes:

(m): Monthly grab sample measurement.

(c): Continuously monitored sonde measurement.

No Sonde: No sonde data available due to no deployment or questionable data (see continuous data logging section)

-: No exceedances.

Chl a: Chlorophyll a, a measurement of algal biomass.

DO: Dissolved Oxygen

MC: Macroalgal Percent Cover

LESSONS LEARNED

Actions taken to secure sonde deployments, including implementation of alternative deployment locations, enhanced housings for the data loggers, and continued use of a security chain and locking system for the TMDL-Est sonde appears to have successfully deterred theft during the 2021-2022 monitoring period. Site access has been improved through selective vegetation clearance, and field teams consisted of two or more personnel, mitigating risks from encounters with transients.

All sondes were calibrated by monitoring staff before and after deployment, regardless of history, and field meter readings were taken in the vicinity of the sondes at deployment, during a mid-deployment check, and immediately prior to their removal to check/confirm that the sondes were reading accurately through the deployment. Issues with the data collected from the sondes appear to be primarily driven by low flow, high algae presence, sedimentation, some bio-fouling, and deployment in the estuary at depth. The most significant issues occurred at TMDL-Est, with sedimentation and depth of deployment likely affecting the continuous DO data. Going forward, sondes deployed at the TMDL-Est site will be reconfigured with strategically located floats and weights to keep the sonde suspended in the water column above the sediment and below the surface. Detected errors in sonde recordings did not substantially affect continuous data collection during the 2021-2022 continuous monitoring events.

^{*:} Very low flow (<0.01 cfs). Low flow conditions likely contributed to exceedance of DO numeric target.

APPENDICES TO ANNUAL REPORT

Summarized field data, field data sheets, chain of custodies, and laboratory reports are provided as appendices to this report.

APPENDIX A MONTHLY IN SITU PARAMETERS

Site	Date	Time	DO	рН	Salinity	sc	Temp.	Berm Status	Discharge
			mg/L		ppt	μs/cm	°C		cfs
TMDL-CL	May-21	0.3034722	13.47	8.28	2.78	5206	4.1	N/A	<1
TMDL-CL	Jun-21	7:30	11.94	8.42	8.67	4995	5.5	N/A	0.96256
TMDL-CL	Jul-21	7:25	11.97	8.43	2.71	5065	5.2	N/A	<1
TMDL-CL	Aug-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-CL	Sep-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-CL	Oct-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-CL	Nov-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-CL	Dec-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-CL	Jan-22	7:17	13.47	8.28	2.78	5206	4.1	N/A	<1
TMDL-CL	Feb-22	7:30	11.94	8.42	8.67	4995	5.5	N/A	0.96256
TMDL-CL	Mar-22	7:25	11.97	8.43	2.71	5065	5.2	N/A	<1
TMDL-CL	Apr-22	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-Est	May-21	11:05	7.96	8.22	9.89	16568	18.1	Open	N/A
TMDL-Est	Jun-21	12:20	8.36	8.22	8.05	13831	20.5	Closed	N/A
TMDL-Est	Jul-21	12:15	6.69	8.42	5.13	9189	26.1	Closed	N/A
TMDL-Est	Aug-21	10:30	8.05	8.25	18.13	24104	21.3	Open	N/A
TMDL-Est	Sep-21	11:15	12.83	8.46	7.77	13466	23.3	Closed	N/A
TMDL-Est	Oct-21	10:10	8.77	8.16	1.21	2343	16.3	Closed	N/A
TMDL-Est	Nov-21	11:10	16.3	8.2	11.28	18535	18.2	Closed	N/A
TMDL-Est	Dec-21	11:29	10.13	7.93	2.64	4906	14.4	Closed	N/A
TMDL-Est	Jan-22	12:19	10.17	8.33	3.01	5536	12.5	Open	N/A
TMDL-Est	Feb-22	11:30	11.08	7.93	11.05	16013	14.7	Open	N/A
TMDL-Est	Mar-22	12:43	13.66	8.54	1.27	2788	15.6	Open	N/A
TMDL-Est	Apr-22	11:20	6.36	8.12	1	1992	16.3	Open	N/A
TMDL-R1	May-21	10:00	7.45	7.93	0.74	1458	17.7	N/A	4.76747
TMDL-R1	Jun-21	11:40	8.25	7.96	0.79	1564	18	N/A	2.33077
TMDL-R1	Jul-21	10:25	7.12	8.24	0.82	1617	21.5	N/A	2.82517
TMDL-R1	Aug-21	10:00	7.35	8	0.74	1473	20	N/A	3.46084
TMDL-R1	Sep-21	10:15	8.28	8.12	0.81	1606	20	N/A	2.78986
TMDL-R1	Oct-21	10:00	9.33	8.12	0.84	1650	12.7	N/A	1.41259
TMDL-R1	Nov-21	10:25	9.04	7.9	0.84	1659	14.9	N/A	2.15419
TMDL-R1	Dec-21	10:48	8.35	7.86	0.84	1663	13	N/A	2.08356
TMDL-R1	Jan-22	11:31	10.18	8.25	0.85	1669	11.7	N/A	13.77272
TMDL-R1	Feb-22	11:00	9.47	8.28	0.7	1395	12.8	N/A	10.8416
TMDL-R1	Mar-22	12:03	9.41	8.27	0.69	1365	12.8	N/A	8.96992
TMDL-R1	Apr-22	10:40	5.89	8.09	0.73	1452	14.4	N/A	10.48845
TMDL-R2	May-21	7:30	7.28	7.83	0.6	1202	19.4	N/A	11.041475

Site	Date	Time	DO	рН	Salinity	SC	Temp.	Berm Status	Discharge
			mg/L		ppt	μs/cm	°C		cfs
TMDL-R2	Jun-21	10:30	8.15	7.82	0.63	1260	19.5	N/A	3.42552
TMDL-R2	Jul-21	7:40	6.58	7.61	0.64	1274	22.8	N/A	5.01468
TMDL-R2	Aug-21	9:00	7.44	7.55	0.61	1218	21.2	N/A	7.20419
TMDL-R2	Sep-21	7:40	7.85	7.97	0.7	1388	21.9	N/A	4.30839
TMDL-R2	Oct-21	8:55	8.65	8	0.68	1357	16	N/A	3.42552
TMDL-R2	Nov-21	9:35	7.77	7.57	0.64	1271	18.1	N/A	4.0258725
TMDL-R2	Dec-21	9:53	7.43	7.8	0.64	1275	15.6	N/A	4.66153
TMDL-R2	Jan-22	10:27	9.93	8.04	0.62	1234	12.5	N/A	9.25244
TMDL-R2	Feb-22	10:15	9.87	8.08	0.59	1176	13.3	N/A	9.11118
TMDL-R2	Mar-22	10:56	9.28	8.26	0.58	1162	14	N/A	12.21887
TMDL-R2	Apr-22	9:50	9.69	8	0.6	1204	-88	N/A	11.01817
TMDL-R3	May-21	10:50	9.04	7.83	0.53	1062	18.6	N/A	4.66153
TMDL-R3	Jun-21	10:00	8.7	7.72	0.55	1096	18.1	N/A	3.28426
TMDL-R3	Jul-21	10:00	8.3	7.72	0.56	1127	20.8	N/A	2.82517
TMDL-R3	Aug-21	8:20	7.96	7.32	0.58	1160	19.6	N/A	3.17832
TMDL-R3	Sep-21	9:00	8.72	7.8	0.62	1233	19.4	N/A	2.18951
TMDL-R3	Oct-21	8:25	9.35	7.78	0.62	1241	13.2	N/A	1.48322
TMDL-R3	Nov-21	8:50	8.54	7.78	0.6	1201	15.4	N/A	1.34196
TMDL-R3	Dec-21	9:12	9.42	8.6	0.6	1201	12.8	N/A	1.69504
TMDL-R3	Jan-22	9:38	10.12	7.98	0.6	1196	11.7	N/A	19.10523
TMDL-R3	Feb-22	9:30	9.94	8.06	0.56	1126	12.7	N/A	18.39894
TMDL-R3	Mar-22	9:59	9.79	8	0.56	1113	12.9	N/A	14.4437
TMDL-R3	Apr-22	9:10	7.8	7.83	0.59	1177	13.7	N/A	9.21713
TMDL-R4	May-21	0:00	6.24	7.41	0.52	1042	17.5	N/A	3.39021
TMDL-R4	Jun-21	9:00	5.95	7.04	0.54	1084	-88	N/A	2.83765
TMDL-R4	Jul-21	7:50	6.55	7.12	0.55	1103	18.72	N/A	0.56503
TMDL-R4	Aug-21	7:30	5.72	7.13	0.51	1027	18.4	N/A	0.38846
TMDL-R4	Sep-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-R4	Oct-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-R4	Nov-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-R4	Dec-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-R4	Jan-22	8:11	6.87	7.8	0.49	994	13.9	N/A	2.96643
TMDL-R4	Feb-22	8:00	6.65	7.99	0.53	1065	14.1	N/A	7.38076
TMDL-R4	Mar-22	8:11	6.4	8	0.53	1067	15.1	N/A	8.72272
TMDL-R4	Apr-22	8:05	6.73	7.54	0.56	1114	15.8	N/A	7.66328
TMDL-SA	May-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-SA	Jun-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-SA	Jul-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-SA	Aug-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-SA	Sep-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-SA	Oct-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-SA	Nov-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY

Site	Date	Time	DO	рН	Salinity	SC	Temp.	Berm Status	Discharge
			mg/L		ppt	μs/cm	°C		cfs
TMDL-SA	Dec-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-SA	Jan-22	8:46	10.01	7.94	0.77	1516	9.6	N/A	2.22482
TMDL-SA	Feb-22	8:30	10.91	8.05	0.75	1486	10.6	N/A	0.74161
TMDL-SA	Mar-22	0:00	7.31	7.72	0.66	1318	12.1	N/A	0.21189
TMDL-SA	Apr-22	8:30	5.18	7.5	0.52	1049	13.7	N/A	<1
TMDL-R4	Oct-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-SA	Nov-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-SA	Dec-21	-	DRY	DRY	DRY	DRY	DRY	DRY	DRY
TMDL-SA	Jan-22	8:46	10.01	7.94	0.77	1516	9.6	N/A	2.22482
TMDL-SA	Feb-22	8:30	10.91	8.05	0.75	1486	10.6	N/A	0.74161
TMDL-SA	Mar-22	0:00	7.31	7.72	0.66	1318	12.1	N/A	0.21189
TMDL-SA	Apr-22	8:30	5.18	7.5	0.52	1049	13.7	N/A	<1

Grey shaded cells indicate a value in exceedance of numeric targets.

APPENDIX B MONTHLY WATER QUALITY DATA

Date	Analyte	Units	MDL	RL	TMDL-Est	TMDL-R1	TMDL-R2	TMDL-R3	TMDL-R4	TMDL-SA	TMDL-CL
Apr-22	Dissolved Nitrogen	mg/L	NA	NA	1.4415	1.555	2.105	1.67	1.79	3.1352	NS
Apr-22	Dissolved Phosphorous	mg/L	0.016	0.03	0.046	0.0553	0.0843	0.169	0.0624	0.109	NS
Apr-22	Dissolved TKN	mg/L	0.13	0.4	0.271	0.275	0.235	NA	NA	NA	NS
	Total Nitrate + Nitrite as										
Apr-22	N	mg/L	NA	NA	1.1705	1.28	1.87	1.67	1.79	3.1352	NS
Apr-22	Nitrate	mg/L	0.01	0.02	1.16	1.28	1.87	1.67	1.79	3.1	NS
Apr-22	Nitrite	mg/L	0.01	0.02	0.0105	NA	NA	NA	NA	0.0352	NS
Apr-22	Total Nitrogen	mg/L	NA	NA	1.6225	1.623	2.127	1.67	1.79	3.1352	NS
Apr-22	Total Phosphorous	mg/L	0.016	0.02	0.186	0.166	0.0655	0.231	0.103	0.137	NS
Apr-22	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.452	0.343	0.257	NA	NA	NA	NS
Aug-21	Dissolved Nitrogen	mg/L	NA	NA	0.534	1.707	2.074	0.0505	1.15	NS	NS
Aug-21	Dissolved Phosphorous	mg/L	0.016	0.03	0.0401	0.0615	0.0681	NA	NA	NS	NS
Aug-21	Dissolved TKN	mg/L	0.13	0.4	0.276	0.597	0.474	NA	NA	NS	NS
Aug 21	Total Nitrate + Nitrite as	mg/L	NA	NA	0.258	1.11	1.6	0.0505	1.15	NS	NS
Aug-21		<u> </u>									_
Aug-21	Nitrate	mg/L	0.01	0.02	0.258	1.11	1.6	0.0505	1.15	NS	NS
Aug-21	Nitrite	mg/L	0.01	0.02	NA	NA	NA	NA	NA	NS	NS
Aug-21	Total Nitrogen	mg/L	NA	NA	0.795	1.75	2.101	0.0505	1.15	NS	NS
Aug-21	Total Phosphorous	mg/L	0.016	0.02	0.0539	0.0605	0.0903	0.031	NA	NS	NS
Aug-21	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.537	0.64	0.501	NA	NA	NS	NS
Aug-21	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.537	0.64	0.501	NA	NA	NS	NS
Dec-21	Dissolved Nitrogen	mg/L	NA	NA	1.5225	2.343	3.07	0.47	NS	NS	NS
Dec-21	Dissolved Phosphorous	mg/L	0.016	0.03	NA	0.0315	0.0505	0.016	NS	NS	NS
Dec-21	Dissolved TKN	mg/L	0.13	0.4	0.702	0.563	0.54	NA	NS	NS	NS
Dec-21	Total Nitrate + Nitrite as N	mg/L	NA	NA	0.8205	1.78	2.53	0.47	NS	NS	NS
Dec-21	Nitrate	mg/L	0.01	0.02	0.81	1.78	2.53	0.47	NS	NS	NS
Dec-21	Nitrite	mg/L	0.01	0.02	0.0105	NA	NA	NA	NS	NS	NS
Dec-21	Total Nitrogen	mg/L	NA	NA	1.4615	2.372	3.368	0.47	NS	NS	NS
Dec-21	Total Phosphorous	mg/L	0.016	0.02	NA	0.037	0.0427	0.0225	NS	NS	NS
Dec-21	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.641	0.592	0.838	NA	NS	NS	NS

Date	Analyte	Units	MDL	RL	TMDL-Est	TMDL-R1	TMDL-R2	TMDL-R3	TMDL-R4	TMDL-SA	TMDL-CL
Feb-22	Dissolved Nitrogen	mg/L	NA	NA	2.5872	3.3052	2.8406	4.76	3.0515	0.542	2.1022
Feb-22	Dissolved Phosphorous	mg/L	0.016	0.03	NA	NA	0.0348	NA	NA	0.0441	NA
Feb-22	Dissolved TKN	mg/L	0.13	0.4	0.187	0.302	0.465	0.17	NA	0.358	0.542
Feb-22	Total Nitrate + Nitrite as N	mg/L	NA	NA	2.2852	2.8402	2.6706	4.76	2.6935	NA	1.9152
Feb-22	Nitrate	mg/L	0.01	0.02	1.9	2.27	2.83	2.66	4.75	2.68	NA
Feb-22	Nitrite	mg/L	0.01	0.02	0.0152	0.0152	0.0102	0.0106	0.01	0.0135	NA
Feb-22	Total Nitrogen	mg/L	NA	NA	3.0452	3.3942	2.6706	4.76	2.9935	0.659	2.2842
Feb-22	Total Phosphorous	mg/L	0.016	0.02	0.0363	0.0267	0.0286	NA	0.0374	0.0524	NA
Feb-22	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.369	0.76	0.554	NA	NA	0.3	0.659
Jan-22	Dissolved Nitrogen	mg/L	NA	NA	2.6882	2.815	2.243	3.694	4.143	3.0512	2.5412
Jan-22	Dissolved Phosphorous	mg/L	0.016	0.03	0.0541	0.0255	0.0236	NA	0.0282	0.065	0.0386
Jan-22	Dissolved TKN	mg/L	0.13	0.4	0.408	0.485	0.315	0.203	0.174	0.333	1.56
Jan-22	Total Nitrate + Nitrite as N	mg/L	NA	NA	2.2032	2.5	2.04	3.52	3.81	1.4912	2.1332
Jan-22	Nitrate	mg/L	0.01	0.02	2.12	2.19	2.5	2.04	3.52	3.81	1.47
Jan-22	Nitrite	mg/L	0.01	0.02	0.0132	0.0132	NA	NA	NA	NA	0.0212
Jan-22	Total Nitrogen	mg/L	NA	NA	2.9942	2.843	2.242	3.731	4.14	3.2312	2.5572
Jan-22	Total Phosphorous	mg/L	0.016	0.02	0.0798	0.0662	0.0334	0.022	0.0305	0.0672	0.0341
Jan-22	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.424	0.791	0.343	0.202	0.211	0.33	1.74
Jul-21	Dissolved Nitrogen	mg/L	NA	NA	0.591	1.707	3.572	0.2279	1.29	NS	NS
Jul-21	Dissolved Phosphorous	mg/L	0.016	0.03	0.0303	0.0891	0.204	NA	NA	NS	NS
Jul-21	Dissolved TKN	mg/L	0.13	0.4	0.591	0.497	0.552	0.137	NA	NS	NS
Jul-21	Chlorophyll a	mg/m3	1	2	45.4	NS	NS	NS	NS	NS	NS
Jul-21	Total Nitrate + Nitrite as N	mg/L	NA	NA	NA	1.21	3.02	0.0909	1.29	NS	NS
Jul-21	Nitrate	mg/L	0.01	0.02	NA	1.21	3.02	0.0909	1.29	NS	NS
Jul-21	Nitrite	mg/L	0.01	0.02	NA	NA	NA	NA	NA	NS	NS
Jul-21	Total Nitrogen	mg/L	NA	NA	0.811	1.789	3.676	0.2449	1.29	NS	NS
Jul-21	Total Phosphorous	mg/L	0.016	0.02	0.0696	0.137	0.241	0.0291	0.0215	NS	NS
Jul-21	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.811	0.579	0.656	0.154	NA	NS	NS
Jul-21	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.811	0.579	0.656	0.154	NA	NS	NS

Date	Analyte	Units	MDL	RL	TMDL-Est	TMDL-R1	TMDL-R2	TMDL-R3	TMDL-R4	TMDL-SA	TMDL-CL
Jun-21	Dissolved Nitrogen	mg/L	NA	NA	0.679	1.326	2.602	0.317	0.849	NS	NS
Jun-21	Dissolved Phosphorous	mg/L	0.016	0.03	0.0286	0.0562	0.108	0.0184	NA	NS	NS
Jun-21	Dissolved TKN	mg/L	0.13	0.4	0.38	0.433	0.442	NA	NA	NS	NS
Jun-21	Total Nitrate + Nitrite as N	mg/L	NA	NA	0.299	0.893	2.16	0.317	0.849	NS	NS
Jun-21	Nitrate	mg/L	0.01	0.02	0.299	0.893	2.16	0.317	0.849	NS	NS
Jun-21	Nitrite	mg/L	0.01	0.02	NA	NA	NA	NA	NA	NS	NS
Jun-21	Total Nitrogen	mg/L	NA	NA	0.771	1.408	2.695	0.317	0.981	NS	NS
Jun-21	Total Phosphorous	mg/L	0.016	0.02	0.0524	0.0819	0.114	0.0191	NA	NS	NS
Jun-21	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.472	0.515	0.535	NA	0.132	NS	NS
Mar-22	Dissolved Nitrogen	mg/L	NA	NA	2.254	2.722	2.31	4.97	1.8014	0.5352	2.0603
Mar-22	Dissolved Phosphorous	mg/L	0.016	0.03	0.0253	0.022	NA	NA	NA	NA	NA
Mar-22	Dissolved TKN	mg/L	0.13	0.4	0.39	0.314	0.272	NA	NA	0.21	0.519
Mar-22	Total Nitrate + Nitrite as N	mg/L	NA	NA	1.94	2.45	2.31	4.97	1.5914	0.0162	1.6703
Mar-22	Nitrate	mg/L	0.01	0.02	1.66	1.94	2.45	2.31	4.97	1.58	0.0162
Mar-22	Nitrite	mg/L	0.01	0.02	0.0103	NA	NA	NA	NA	0.0114	NA
Mar-22	Total Nitrogen	mg/L	NA	NA	2.33	2.729	2.473	4.97	1.8134	0.5942	2.1373
Mar-22	Total Phosphorous	mg/L	0.016	0.02	0.0736	0.291	0.0244	0.017	NA	0.0339	0.0246
Mar-22	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.467	0.39	0.279	0.163	NA	0.222	0.578
May-21	Dissolved Nitrogen	mg/L	NA	NA	0.679	0.962	2.97	0.816	1.088	NS	NS
May-21	Dissolved Phosphorous	mg/L	0.016	0.03	NA	0.0379	0.0569	NA	NA	NS	NS
May-21	Dissolved TKN	mg/L	0.13	0.4	0.412	0.419	1.66	0.426	0.181	NS	NS
May-21	Chlorophyll a	mg/m3	1	2	8.01	NS	NS	NS	NS	NS	NS
May-21	Total Nitrate + Nitrite as N	mg/L	NA	NA	0.267	0.543	1.31	0.39	0.907	NS	NS
May-21	Nitrate	mg/L	0.01	0.02	0.267	0.543	1.31	0.39	0.907	NS	NS
May-21	Nitrite	mg/L	0.01	0.02	NA	NA	NA	NA	NA	NS	NS
May-21	Total Nitrogen	mg/L	NA	NA	0.763	1.065	1.931	0.789	1.055	NS	NS
May-21	Total Phosphorous	mg/L	0.016	0.02	0.0479	0.0429	0.0705	NA	NA	NS	NS
May-21	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.496	0.522	0.621	0.399	0.148	NS	NS
Nov-21	Dissolved Nitrogen	mg/L	NA	NA	0.81	1.986	3.437	0.35	NS	NS	NS

Date	Analyte	Units	MDL	RL	TMDL-Est	TMDL-R1	TMDL-R2	TMDL-R3	TMDL-R4	TMDL-SA	TMDL-CL
Nov-21	Dissolved Phosphorous	mg/L	0.016	0.03	0.0163	0.0313	0.0396	NA	NS	NS	NS
Nov-21	Dissolved TKN	mg/L	0.13	0.4	0.396	0.346	0.727	NA	NS	NS	NS
N 24	Total Nitrate + Nitrite as	(1	N/A	N/A	0.414	1.64	2.74	0.25	NC	NC	NC
Nov-21	N	mg/L	NA	NA	0.414	1.64	2.71	0.35	NS	NS	NS
Nov-21	Nitrate	mg/L	0.01	0.02	0.414	1.64	2.71	0.35	NS	NS	NS
Nov-21	Nitrite	mg/L	0.01	0.02	NA	NA	NA	NA	NS	NS	NS
Nov-21	Total Nitrogen	mg/L	NA	NA	0.778	2.008	3.114	0.35	NS	NS	NS
Nov-21	Total Phosphorous	mg/L	0.016	0.02	0.037	0.0548	0.047	0.0279	NS	NS	NS
Nov-21	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.364	0.368	0.404	NA	NS	NS	NS
Oct-21	Dissolved Nitrogen	mg/L	NA	NA	0.6299	2.127	3.052	0.0508	NS	NS	NS
Oct-21	Dissolved Phosphorous	mg/L	0.016	0.03	0.0341	0.0512	0.0862	0.0305	NS	NS	NS
Oct-21	Dissolved TKN	mg/L	0.13	0.4	0.41	0.367	0.482	NA	NS	NS	NS
Oct-21	Total Nitrate + Nitrite as N	mg/L	NA	NA	0.2199	1.76	2.57	0.0508	NS	NS	NS
Oct-21	Nitrate	mg/L	0.01	0.02	0.205	1.76	2.57	0.0508	NS	NS	NS
Oct-21	Nitrite	mg/L	0.01	0.02	0.0149	NA	NA	NA	NS	NS	NS
Oct-21	Total Nitrogen	mg/L	NA	NA	0.7059	2.19	3.149	0.0508	NS	NS	NS
Oct-21	Total Phosphorous	mg/L	0.016	0.02	0.0527	0.0686	0.151	0.031	NS	NS	NS
Oct-21	Total Phosphorous	mg/L	0.016	0.02	0.0527	0.0686	0.151	0.031	NS	NS	NS
Oct-21	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.486	0.43	0.579	NA	NS	NS	NS
Oct-21	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.486	0.43	0.579	NA	NS	NS	NS
Sep-21	Dissolved Nitrogen	mg/L	NA	NA	0.57	1.861	2.907	0.378	NS	NS	NS
Sep-21	Dissolved Phosphorous	mg/L	0.016	0.03	NA	0.0577	0.129	NA	NS	NS	NS
Sep-21	Dissolved TKN	mg/L	0.13	0.4	0.57	0.771	0.857	0.378	NS	NS	NS
Sep-21	Chlorophyll a	mg/m3	1	2	15.2	NS	NS	NS	NS	NS	NS
Sep-21	Total Nitrate + Nitrite as	mg/L	NA	NA	NA	1.09	2.05	NA	NS	NS	NS
Sep-21	Nitrate	mg/L	0.01	0.02	NA	1.09	2.05	NA	NS	NS	NS
Sep-21	Nitrite	mg/L	0.01	0.02	NA	NA	NA	NA	NS	NS	NS
Sep-21	Total Nitrogen	mg/L	NA	NA	0.956	1.635	3.18	0.649	NS	NS	NS
Sep-21	Total Phosphorous	mg/L	0.016	0.02	0.0762	0.0831	0.228	0.147	NS	NS	NS
Sep-21	Total Kjeldahl Nitrogen	mg/L	0.13	0.4	0.956	0.545	1.13	0.649	NS	NS	NS

APPENDIX C DRY SEASON RIVERINE MONTHLY ALGAL BIOMASS (CHLOROPHYLL A) AND PERCENT MACROALGAL COVER

Site	Date	Field Replicate	Number of Transects Collected	Chlorophyll a (mg/m2)	Percent Presence Macroalgae (%)
TMDL-R1	15-Jul-21	1	11	11.2	14.29
TMDL-R1	09-Sep-21	1	11	58.8	33.33
TMDL-R2	13-May-21	1	11	41.1	63.27
TMDL-R2	15-Jul-21	1	11	37.8	26.73
TMDL-R2	09-Sep-21	1	11	39.3	21.11
TMDL-R3	12-May-21	1	11	59	33.33
TMDL-R3	14-Jul-21	1	11	77	32.04
TMDL-R3	08-Sep-21	1	11	44.3	19.05
TMDL-R4	12-May-21	1	11	88.6	72.82
TMDL-R4	14-Jul-21	1	11	109	75.73

APPENDIX D FULL SIZE CONTINUOUS MONITORING CHARTS

FIGURE D1 2021 SECOND QUARTER PH CONTINUOUS DATA LOGGING

FIGURE D2 2021 THIRD QUARTER PH CONTINUOUS DATA LOGGING

FIGURE D3 2021 FOURTH QUARTER PH CONTINUOUS DATA LOGGING

FIGURE D5 2021 SECOND QUARTER DISSOLVED OXYGEN CONTINUOUS DATA LOGGING⁹

⁹ The DO sensor for TMDL-R1 appears to have become impacted by low flow, sedimentation, bio-fouled or otherwise disturbed on 5/18 and data after this date are suspect.

FIGURE D6 2021 THIRD QUARTER DISSOLVED OXYGEN CONTINUOUS DATA LOGGING¹⁰

¹⁰ the DO sensor for TMDL-Est appears to have become lodged at or below the sediment in the estuary, bio-fouled or otherwise disturbed on 9/25 and data after this date are suspect.

FIGURE D7 2021 FOURTH QUARTER DISSOLVED OXYGEN CONTINUOUS DATA LOGGING

FIGURE D8 2022 FIRST QUARTER DISSOLVED OXYGEN CONTINUOUS DATA LOGGING¹¹

¹¹ the DO sensor for TMDL-Est appears to have become lodged at or below the sediment in the estuary, bio-fouled or otherwise disturbed on 3/20 and data after this date are suspect, and TMDL-SA was observed to be ponded during sonde retrieval in March 2022, which likely contributed to decreasing DO levels at the site.

APPENDIX E FIELD DATA SHEETS

https://countyofventuraca-my.sharepoint.com/personal/ ewelina_mutkowska_ventura_org/_layouts/15/onedrive.aspx?id=%2Fpersonal% 2Fewelina%5Fmutkowska%5Fventura%5Forg%2FDocuments%2F2022%20VR%20Algae% 20TMDL%20AMR&ga=1

APPENDIX F CHAIN OF CUSTODIES AND LABORATORY REPORTS

https://countyofventuraca-my.sharepoint.com/personal/ ewelina_mutkowska_ventura_org/_layouts/15/onedrive.aspx?id=%2Fpersonal% 2Fewelina%5Fmutkowska%5Fventura%5Forg%2FDocuments%2F2022%20VR%20Algae% 20TMDL%20AMR&ga=1

Rincon Ventu. River TMDL Field Data Sheet

Sample Date:	05/12/2021	
Sample Crew:	SPSH M	MT

Sta	tion ID:	RH	R3	CL	SA	\		
San	nple Time:	08:00	10:50	DRY	DRY			
Col	ection Method: (Circle method)	Standard MCM	Standard MCM	Standard MCM	Standard MCM	Standard MCM	Standard MCM	Standard MCM
Device	Rubber delimiter (area=12.6cm2)	4	10					
tion D	PVC Delimiter (area=12.6cm2)	0	(
Collection	Syringe Scrubber (area=5.3cm2)	7	Ø	الده				
Nui	mber of transects sampled (0-11)	11						
Cor	mposite Volume (mL)	380	446					
Chl	orophyll a volume (25 mL preferred)	25	25					

omments:	7		

Rincon Ventu River TMDL **Field Data Sheet**

Sample Date: OT/3/2021
Sample Crew: SP SH MC M5

Sta	tion ID:	RZ	R1	EST				
San	nple Time:	0730	1000	1105		Standard MCM	Standard MCM	
Col	lection Method: (Circle method)	Standard MCM	Standard MCM	Standard MCM	Standard MCM			Standard MCM
Device	Rubber delimiter (area=12.6cm2)	1		1				
ction D	PVC Delimiter (area=12.6cm2)	4						
Collec	Syringe Scrubber (area=5.3cm2)	6						
Nui	mber of transects sampled (0-11)	11						
Composite Volume (mL)		380		1000				
Chl	orophyll a volume (25 mL preferred)	25		500				

Comments:	RI was unable to be sampled due to deep pools an increasable
	banks. Haw and water was collected.

Ventura River Algae TMDL Field Da Sheet (Reaches 1—4) - Page 1 of 2

Discharge Measurement

1st Measurement = left bank (looking downstream)

Event ID (Month Year):									
Site ID: Thou - R1	Ve	locity Area N	lethod (pref	erred)	Buoyant Object Method (Use only if velocity area method not possible)				
Date/Time: 05/13/200 1000 Crew Members: SP SH MC MS	No.	Distance from Left	Depth (ft)	Velocity	(Se Only II Ver	Float 1	Float 2	Float 3	
	110.	Bank (ft)	Deptii (it)	(ft/sec)	Distance (t)				
Latitude/Longitude: 34.281939 -119.309016	1				Float Time (sec)				
Flow (circle one): Flowing / Ponded / Dry	-	-		-	Float R	each Cross	Section (ft		
Wind Strength:	2				11001	1/	17		
Calon / Light Breeze / Moderate Breeze / Strong Breeze / Windy	3		2			Upper Section	Middle Section	Lower Section	
Wind Direction: Blowing (circle one) From / To						section	Section	Section	
Photos (check): Downstream	4				Width				
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5		1		Depth 1				
discharge comments, etc.):	_				Depth 2				
Unable to be sampled for dula	6		2	2	-				
but to deep pools and incressible	7		M		Depth 3				
240	8				Depth 4 Depth 5				
January—December Monthly In Situ Measurements:	9		7/		1		70.70		
pH: 7.93pH units EC:µS/cm	10		111		May—September: Reach Length (150				
DO: 7.45 mg/L SC: 145% μS/cm DO: 6.745 ppt	11		1		if wetted width > 10		-		
Water Temp: 17.7 °C	12		1		Callege	on Device	/	Quantity	
Flow (from discharge measurement):cfs		-	/ V		(sum # trans		vieo)	Quantity	
	13		/				-		
	14				Rubber Delimiter (A	1	/		
Samples Collected (check box)	15				PVC Delimiter (Area	a=12.6cm²)			
January—December Monthly Water:	16				Syringe Scrubber (A	rea=5.3cm	2)		
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	10				Other (Asso-	/	1	17/	
Nitrogen (unfiltered):	17				Other (Area=			11	
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transec	ts Sampled	(0-11)		
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)			
Chlorophyll <i>a</i> (filters—algae):					Chlorophyll a Volur	ne			
S.1.5. Sp., 71. 2 (11.15.5 4.05.5).	20				(use GF/F filter, 25		ed volume)	I	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 2 of 2

Ventura River Algae TMDL Transect Measurements (for percent cover, May—September)

		Macroalgae	Presence/Abs	ence (P/A) a	nd Water Depth	n (cm)		Densiom Count co	eter (0-17) vered dots		Photo (✓ when Taken)
Transect	Wetted Width (m)	Left Bank	Left Center	Center	Right Center	Right Bank	Center Left	Center Upstream	Center Right	Center Downstream	Upstream/ Downstream
Α	1										
АВ	1	ivo	T 5	MPL	ABLE		X L				HE THE
В	-										
ВС		1							7 1		
С						/					No September 1
CD						/				Hat and S	1
D					/						报作到
DE	11.1								3 11		
E				/							LEASE OF
EF				X							
F											
FG					1						WILLS S
G											15 F. A.
GH								State of	12-13-216		10 3 9
н		/				1					Balla .
ні							N.	1 3	13		
i							1				
IJ	/										TEXT I
J	/										
JK								WE -			106
K											

Ventura River Algae TMDL Field Da Sheet (Reaches 1—4) - Page 1 of 2

Discharge Measurement

1st Measurement = left bank (looking downstream)

Event ID (Month Year): May Zou		151	ivieasuremen	it = iejt parik	(IOOKING GOWNSTream)			-
Site ID: TMDL-RZ	Ve	locity Area M	1ethod (pref	erred)	Buoy (Use only if velo	ant Object		ossible)
Date/Time: 5/3/202 0736		Distance		Velocity		Float 1	Float 2	Float 3
Crew Members: SPSH MC M5	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)			
Latitude/Longitude: 34.3392911 -119.297123	1				Float Time (sec)			
Flow (circle one): Flowing DPonded / Dry	-				Float Re	each Cross	Section (ft)	
Wind Strength:	2		0			Upper	Middle	Lower
calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	3		0			Section	Section	Section
Wind Direction: Blowing (circle one) From / To			2			Section	bettion	55511511
Photos (check): Upstream Downstream	4				Width		1	
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5				Depth 1			
discharge comments, etc.): Flow taken (w. 13			~		Depth 2			
encem/meni EF > H	6		-		Depti 3			
	7		111					1
	8				Depth 4			
	•				Depth 5			1
January—December Monthly In Situ Measurements:	9					12-11-11-11		
pH: 7.83 pH units -ΕC: μs/cm	10		IT		May—September:			
DO: <u>7.28</u> mg/L SC: <u>12/2</u> μS/cm		1	11		Reach Length (150			0 m; 250 m
DO: % Salinity: <u>0.50</u> ppt	11		1		if wetted width > 10) m):		_
Water Temp: <u>19. 니</u> °C	12		1		Collecti	on Device		Quantity
Flow (from discharge measureme nt):efs	13				(sum # transe	ects per De	evice)	
	14				Rubber Delimiter (A	rea=12.6c	m²)	/
Samples Collected (check box)	15				PVC Delimiter (Area	=12.6cm ²)		И
January—December Monthly Water:					Syringe Scrubber (A	rea=5.3cm	n ²)	16
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16				Other (Area=		1	18
Nitrogen (unfiltered):	17						/	-
Dissolved Phosphorus and Nitrogen (field filtered): 🗶	18				Number of Transec	ts Sampled	(0-11)	
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)		380
Chlorophyll a (filters—algae):	20				Chlorophyll a Volun			25
	-				(use GF/F filter, 25	mL preferr	ed volume)	10

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 2 of 2

Ventura River Algae TMDL Transect Measurements (for percent cover, May—September)
Site: TMDL RZ Date: 05/13/401 Crew: SP SH MC MJ

		Macroalgae	Macroalgae Presence/Absence (P/A) and Water Depth (cm)				Densiometer (0-17) Count covered dots				Photo (✓ when Taken)	
Transect	Wetted Width (m)	Left Bank	Left Center	Center	Right Center	Right Bank	Center Left	Center Upstream	Center Right	Center Downstream	Upstream/ Downstream	
Α	6.5	0/A	43/P	66/ P	70/P	0/A	6	12	6	11	4. dem	
AB	7	O/A	40/A	33/A	47/P	OA			0.3	1	1304 5	
В	45	QP	20/10	40/A	47/A	Op	16	0	8	10	The major of	
ВС	5.0	GYD.	UI/P	40/p	40/A	OIP	2,62775				一生()	
С	23	C/NA	30/A	40/p	97/P	0/0	14	9	16	12	Kala a	
CD	4.0	O/A	27/P	25/10	ay P	O/A				Sarbel	CONTROL OF	
D	435	0/4	28/A	15/P	17/P	0/p	17	16	15	17	The state of	
DE	38	OYA	9/50	25/p	37/p	O/A			3-141			
E	5.7	U/A	10/0	25/p	25/ A	O/A	12	7	8	14	BATTE !	
EF	70	UP	43/p	NA	28/2	C/P		1	- N-04	R TIVE	4	
F	8.5	U/P	14 P	45/P	49/P	0/0	13	11	4	6	UP demy	
FG	6.0	OP	SUP	54/P	60/P	O/NA						
G	7.7	U/P	50/P	50/p	59/p	OLA	17	15	15	14		
GH	7.5	0/P	50/A	47/4	66/P	0/0					175125	
Н	71	U/P	51/P	54/P	47/A	O/P	10	9	12	1)	ARLES ES	
Ŀ HI	7.7	OVP	(00/A	73/P	47/2	UP		T. E	F	P. C.		
1	75	OIP	35/A	37/P	43/A	dA	17	11	9	9		
IJ	7.3	OIA	19/A	25/P	30/P	OIA			g all			
J	7.0	OlMA	20/A	17/A	13/P	0/p	16	10	12	U		
JK	55	OINA	SINA	258 /A	29/A	0/1		STILL STATE		50145年以	ALC FROM	
K	5.5	CVINA	7/P	23/P	37/P	OIA	14	17	17		Piden.	

Ventura River Algae TMDL Field Di heet (Reaches 1—4) - Page 1 of 2

				charge Mea		3			
Event ID (Month Year): May Zard		- 1st	Measuremer	nt = left bank	(looking downstream)	_/			
Site ID: TMDL-R3	Ve	locity Area M	1ethod (pref	erred)	Buoyant Object Method Use only if velocity area method not possible)				
Date/Time: 05/12/10/ 10.50		Distance		Velocity	Float 1 Float 2	Float 3			
Crew Members: SP SH MC MJ	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)				
Latitude/Longitude: 34, 2640 -119, 175 2	-	Dalik (it)			Float Time (sec				
Flow (circle one): Flowing / Ponded / Dry	1				Floor Poorly Cross Services (6)				
Wind Strength:	2				Float Reach Cross Section (ft)				
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	3	(1	Upper Middle	Lower			
Wind Direction: Blowing (circle one) From To	,		1		Section Section	Section			
Photos (check): Opstream Oownstream	4		7		Width				
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5		1		Depth 1				
discharge comments, etc.) :	6				Depth 2				
					Depth 3				
	7				pepth 4				
	8		>		Depth 5	1			
January—December Monthly In Situ Measurements:	9		#			_			
pH: 1,83 pH units EC. μS/cm	10		111		May—September: Algae Collection for Ch				
DO: <u>9.0</u> 4 mg/L SC: <u>106</u> 7 μS/cm	11				Reach Length (150 m if wetted width ≤ 10 if wetted width > 10 m):) m; 250 m			
Water Temp:% Saiinity:ppt	12								
Flow (from discharge measurement):cfs	-		7		Collection Device (sum # transects per Device)	Quantity			
	13		11		Rubber Delimiter (Area=12.6cm²)	1.6			
	14					10			
Samples Collected (check box)	15		90		PVC Delimiter (Area=12.6cm²)				
January—December Monthly Water:	16		10		Syringe Scrubber (Area=5.3cm²)	g			
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered):	17				Other (Area=)	8			
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transects Sampled (0-11)	11			
May—September Dry Season Monthly Algae:	19		-		Composite Volume (mL)	440			
Chlorophyll a (filters—algae):	20				Chlorophyll a Volume	25			
					(use GF/F filter, 25 mL preferred volume)				

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 2 of 2

		Macroalgae	Presence/Abs	sence (P/A) ar	nd Water Depth	ı (cm)			eter (0-17) vered dots		Photo (✓ when Taken)
Transect	Wetted Width (m)	Left Bank	Left Center	Center	Right Center	Right Bank	Center Left	Center Upstream	Center Right	Center Downstream	Upstream/ Downstream
Α	45	CIA	8/A	10/P	12/P	0/A	9	0	5	9	down 408
AB	65	0/A	16/P	34/P	5/P	0/P					
В	5.6	0/4	25/p	9/P	15/P	0/1	H	4	7	5	
ВС	60	OIA	22/A	92/b	W/A	CIA					15 46
С	7.2	0/1	24/A	WA	11/4	OP	4	2	3	9	
CD	62	OP	17/A	30/A	24/P	0/A					
D	9	0/ NA	18/A	0/A	6/P	CIA	7	5	0	0	
DE	12	O/NA	KMA	7/A	14/P	OP					
E	VI.	O/NA	147	26/A	21/12	0/P	8	4	6	7	
: EF	9	0/4	34/P	36/A	50/P	OP					P. Han
F	6.5	O/A	52/4	36/A	37/P	O/A	8	7	4	11	dem you
FG	9.5	0/A	12/A	2714	33/1	QA					
G	7.1	Q/A	30/A	29/A	3/1P	0/0	6	10	0	7	
GH	6.8	0/A	28/P	37/P	44/A	OIA					
Н	5.8	OLA	30/A	26/A	40/A	0/4	8	12	17	17	
НІ	4.5	OIA	14/P	30/A	341A	6/4		11, 50			
1	4.3	OLA	0/4	24/P.	25/A	OlA	16	16	17	15	
IJ	2.0	CA	2/4	9/4	GA	OLA					
J	1.7	O/A	aVA	18/A	8/A	OLA	17	17	17	17	
JK	1.8	O/A	3/A	7/4	OP	0/4					
К	2-5	0/P	16/A	GP	2/A	OlA	8	9	8	16	Clam 404

Ventura River Algae TMDL Field Da

Sheet (Reaches 1—4) - Page 1 of 2

Discharge Measurement

Event ID (Month Year): May ZOZ		1st	Measuremer	it = left bank	(looking downstream		
Site ID: THDL- R4'	Ve	locity Area M	lethod (pref	erred)	Buoy (Use only if vel	ant Object	
Date/Time: 05/12/2021 Crew Members: SH SR MC MS	No.	Distance from Left Bank (ft)	Depth (ft)	Velocity (ft/sec)	Distance (ft)	Float 1	
Latitude/Longitude: 34.727 - 19 830 Flow (circle one): Flowing Ponded / Dry	1				Float Time (sec		ļ
Wind Strength:	2				Float R	each Cross	S
Calm/ Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From / To	3					Upper Section	
Photos (check): YUpstream Downstream	4		D		Width		
Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.):	5		7		Depth 1		
	6				Depth 2		-
	7		2		Depth 3 Depth 4		
	8		1		Depth 5		-
January—December Monthly In Situ Measurements: pH: 7-4/ pH units EC: μs/cm DO: 6.2-4/ mg/L SC: 10.42 μs/cm DO: 6.2-4/ mg/L SC: 10.42 μs/cm	9 10 11				May—September: Reach Length (150 if wetted width > 1	m if wetted	d
Water Temp: 17.5 °C Flow (from discharge measurement):cts	12		A		Collect (sum # trans	ion Device ects per De	
	14		11		Rubber Delimiter (Area=12.6cr	m
Samples Collected (check box)	15		M		PVC Delimiter (Area	a=12.6cm²)	
January—December Monthly Water:	16				Syringe Scrubber (A	\rea=5.3cm	2
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered):	17				Other (Area=		
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transec	ts Sampled	(
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)	
Chlorophyll a (filters—algae):	20				Chlorophyll <i>a</i> Volur (use GF/F filter, 25		e

Buoy (Use only if velo	ant Object ocity area m		ssible)
	Float 1	Float 2	Float 3
Distance (ft)			
Float Time (sec			
Float Re	ach Cross	Section (ft)	
	Upper Section	Middle Section	Lower Section
Width		1	
Depth 1			
Depth 2			
Depth 3			1
Depth 4			1
Depth 5			

tion for Chlorophyll a width ≤ 10 m; 250 m 150m

Collection Device (sum # transects per Device)	Quantity
Rubber Delimiter (Area=12.6cm²)	4
PVC Delimiter (Area=12.6cm²)	6
Syringe Scrubber (Area=5.3cm²)	7
Other (Area=)	Ø
Number of Transects Sampled (0-11)	
Composite Volume (mL)	380
Chlorophyll a Volume (use GF/F filter, 25 mL preferred volume)	25

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 2 of 2

 Ventura River Algae TMDL Transect Measurements (for percent cover, May—September)

 Site:
 Date:
 S//2/2/2
 Crew:
 SH

		Macroalgae Presence/Absence (P/A) and Water Depth (cm) Densiometer (0-17) Count covered dots									Photo (✓ when Taken)
Transect	Wetted Width (m)	Left Bank	Left Center	Center	Right Center	Right Bank	Center Left	Center Upstream	Center Right	Center Downstream	Upstream/ Downstream
Α	5.5	0/P	43/P	7/P	12/P	0/P	0	0	0	0	OP 415 dem 414
AB	4.2	0/A	51/P	22/ P	16/P	0/p	The Park		13 15 15	1-11-8	
В	58	0/P	14/P	10/P	18/P	0/P	0	0	0	0	
ВС	65	0/8	4/8	21/P	5/12	0/À				E L S	gue pe
С	11	UP	13/P	15/P	8/P	OA	0	0	7	0	VI BUNES
CD	9	OLA	31/P	16/2	341P	OLA			h nas		
D	8	0/P	21/P	24/P	24/P	Q/A	0	4	6	1	de la
DE	9	U/P	13/P	12/P	27/P	OIA			7 4	1 1 - 6	20 4 16
E	9	OP	8/P	31/P	33/P	OFA	0	0	4	6	No. of the
EF	9	Ol.P	33/P	48/P	40/A	NA			33	CILI	165189
F	10	NA	8/A	28/P	47/9	OP	0	0		0	deun UIZ
FG	7.1	0/19	19/A	UNIP	54/P	d/A			Una la	A Parameter	
G	7.5	OA	0/A	20/P	31/P	01P	13	1>	8	0	Hama
GH	6.6	OIA	361A	28/12	SOIP	O(A			TES I	15-6-1	
Н	7	CYA	15/A	58/P	32/P	OLA	11	13	1>	15	AV ILE
Н	5.2	OIP	30/P	40/P	9/P	OLA					
1	5.4	CIA	46/P	37/A	201P	0/8	16	13	5	16	
IJ	4.5	0/P	14/P	O/A	8/P	O/A				FETTER I	
J	6.1	CIP	7/P	11/P	10/P	OIP		0	0	0	NA STEEL
JK	4	O/P	6/A	10/P	14/P	OP		2 3 2	F	1000	
K	8	OPP	10/P	78/A	19/P	OLA	0	0	0	0	Seun 40

Ventura River Algae TMDL—Estuary Details

Site ID: TMDL-Est	Date: 5/13/21 1/05	
Event ID (Month Year): / Yay ZOZ	Date:	
Crew Members: MC MOSP SH		
Weather (circle one): Clear / Partly Cloudy / Overcast / Rainy / Foggy	Ocean Inlet (circle one) Open Restricted / Closed	
Direction of Tide: Ebb / Flood / Slack / N/A	Time of Low Tide: 1822 Time of High Tide: 1151	
Wind Strength: Calm (Slight Breeze / Moderate Breeze / Strong Breeze / N	Windy / Strong Wind Wind Direction: Blowing From / To	
Notes (e.g. homeless, wildlife, dogs, swimming/recreation):	Boach resourchers in the estimy deploying sounds	7
0.0	1 1 0	

TRANSECT 1		
In Situ Measurements (Measure at Floating Mac Monthly (Jan—Dec): pH: 872 pH units DO: 796 mg/L SC: 16568 Salinity: 939	μS/cm Water Temp: <u>18-1</u> °C μS/cm	Water Samples Collected (check box) [Collect at Floating Macroalgae Quadrat 1, Transect 1] Monthly Water (Jan—Dec): Nitrogen, total and dissolved: Phosphorus, total and dissolved: Nitrate + Nitrite as Nitrogen:
Photos: A Oceanward A Landward	Start Time: 11:17 End Time: 1/23	
Start Latitude: 34,274882	Start Longitude: -119, 307200	Dry Season Algae (May—Sep):
End Latitude: 1 54.275031	End Longitude:-119.30 7455	Chlorophyll a (phytoplankton): Volume filtered per sample:
PVC Latitude:	PVC Longitude:	7

				MAC	MACROALGAE—LAND BASED									
Quadrat	1	2	3	4	5	6	7	8	9	10	1	2	3	4
Distance (m)	2.6	5.6	10.0	12.6	56	16.1	20.9	27.4	25.2	25.7	26	2.6	25.7	25.7
Water Depth (must be ≤ 0.3 m)	0	0	8	8	0	8	Ø	0	0	5				1
Condition [Frsh=Fresh, Int=Intermediate, Des=Dessicated, Dd=Dead]	Frsh Int Des Dd	Int Des Dd	Ersti Int Des Dd	Frsh Int Des Dd										
No. Crosshairs with Macroalgae Present	1	7	1	Ø	3		3	5	8	2	0	0	8	9
No. Crosshairs with Macroalgae Absent	45	42	418	49	46	48	46	44	41	47	49	49	4	4
Crosshair Total (must equal 49)	49	49	49	41	49	49	49	44	49	47	49	49	49	49

									-		ezorz MC				
Ventura River Algae TMDL— Estuary Tra TRANSECT 2	ansect Me	easureme	ents Da	te: <u>(7)</u>	(1)	10	00	Crev	v; _ 7' .	211	1 ((")			
Photos: XOceanward A Landy	ward					Cta	rt Times	112	ς		F=	d Time and	1		
Start Latitude: 34.775021	raiu					Start Time: 1128 End Time: 11:32 Start Longitude: -119 30 7476									
11.01002							-		119, 5	0 10 1	0				
End Latitude: 34.274968	í					Enc	d Longit	ude: -	9.30	1769	5				
PVC Latitude:	- Comme					PVC	C Longit	ude:			_				
				MAG	CROALG	GAE-	-LAND B	ASED	1			FI	LOATING M	ACROALG	AE
Quadrat	1	2	3	4	5		6	7	8	9	10	1	2	3	4
Distance (m)	2.5	5.6	100	12-6	15.1	Če	16.1	70.4	22.4	23-2	25.7	2.6	2,6	25.7	25.7
Water Depth (must be ≤ 0.3 m)	B	Ø	8	8	8		8	6	0	8	-0"	1	O'mar.	1	1
Condition	Ersb	Frsh	Frsh	Ersh	Frsh	7	Frsh	Frsh	Frsh	Frsh	Frsh	Frsh	Frsh	\ Frsh	\ Frsh /
[Frsh=Fresh, Int=Intermediate,	Int Des	Int Des	Int Des	Int Des	Int Des		Int Des	Int Des	Int Des	Des	Int Des	Int Des	lnt Des	lot Des	lint
Des=Dessicated, Dd=Dead]	Dd	Dd	Dd	Dd	Dd		Dd	Dd	Dd	Dd	Dd	Dd	Dd	Dd	Dd
No. Crosshairs with Macroalgae Present	1	1>	1	23	46		2.11	ч	0	0	Z	0	8	25	1
No. Crosshairs with Macroalgae Absent	418	6	45	26	3		8	45	49	्। ज	47	49	41	but of	49
Crosshair Total (must equal 49)	4/9	49	4 21	49	49		49	49	41	49	49	4	49	49	49
TRANSECT 3															
Photos: Oceanward Landy	vard					Sta	rt Time:	11	37	1	End	d Time:	141		
Start Latitude: 34.27524	2					Sta	rt Longi	tude: —	119	30 800	7	1			
End Latitude: 34, 2754	75					End	d Longit	ude: 🐷		0806					
PVC Latitude:						PVC	C Longit	ude:		Second					
				MAC	ROALG	GAE-	-LAND B	ASED				FI	OATING N	ACROALG	AE
Quadrat	1	2	3	4	5		6	7	8	9	10	1	2	3	4
Distance (m)	2.6	5.6	10.0	126	15:1	6	16.1	209	4.55	23,2	25.7	2.6	Z. le	25.7	257
Water Depth (must be ≤ 0.3 m)	0	8	8	Ø	B	~	R	De	0	0	8	1	1	1	1
Condition	Ersh	Frsh	Frsh	Frsh	Frsh		Frsh	Frsh	Frsh	€rsh	Frsh	Frsh	Frsh/	Frsh	Frsh
[Frsh=Fresh, Int=Intermediate,	Int Des	Int Des	Int Des	Int Des	Int Des		Int Des	Int Des	Int Des	Int Des	Int Des	nt Des	lot Des	Int Des	Int
Des=Dessicated, Dd=Dead]	Dd	Des	Des	Des	Dd		Dd	Des	Des	Dd	Des	Da	Dd	Des	Des Dd
No. Crosshairs with Macroalgae Present	48	4/4	5	W 6	12	-	78	-7	a		11	0	No. of the last	1	will ag

No. Crosshairs with Macroalgae Absent

Crosshair Total (must equal 49)

机工程

Ventura River Algae TMDL Event Details

EVENT DETAILS	2= / 12
Event ID (Month Year): May ZOZI	Date: 05/ 2/2011
Crew Members: SP SA MC M5	
Weather (circle): Clear / Partly Cloudy / Overcast / Showers / Rain / Otl	
Event Type (check): □ Dry (<0.1" rain per day for the preceding th	
□ Wet (days with ≥0.1" rain and the three day	s following)
Notes :	
ODSERVATION SITES (DIVIED ELOW)	
OBSERVATION SITES (RIVER FLOW)	
Ventura River at Highway 150 (Baldwin Road)	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	-
Ventura River at Santa Ana Blvd Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes: cis)	Photos Taken. Opstream / Downstream
Ventura River at Casitas Vista Road	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
Additional Observation Site:	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
UNSAMPLED TMDL SITES	
Site ID:	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):	
Site ID:	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):	
Reason not sampled (if flowing): Notes: See dayed of a B. Algue not collect	rd
Site ID: Time:	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	riotos taken. Opstream / Downstream
Reason not sampled (if flowing):	
Notes:	
Site ID: Time:	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs) Reason not sampled (if flowing):	
Notes:	

Assessment of hydrologic states Observer(s): Flow habitats: Estimate the percent cover of each habitat type across the entire reach, to within 5%. Definitions follow Ode (2007). Total must equal 100%. Glides Pools Riffles Runs Drv Cascades Rapids % of reach Select the hydrologic state that most closely matches the dominant state of the reach: Description, indicators State (check one) Water may be above banks and turbid or carrying suspended particles. Movement of streambed Hyperrheic (flooding) particles may occur. Water always below banks (if banks are evident). Discharge is high enough to allow access to Eurheic most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, (baseflow) runs, glides). Gravels will generally be stable on the streambed. Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Oligorheic Surface water is more or less continuous throughout reach. Riffles are scarce. (limited flow) Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be Arheic disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in (disconnected concrete channels. pools) Most of the stream bed is devoid of surface water, although substrate may remain wet enough Hyporehic to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state (subsurface water) may not exist in concrete or bedrock channels The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to **Edaphic** support active hyporheic life (although dessication-resistent life stages may be present). Soil (dry) moisture in the streambed is not discernibly greater than in nearby soils above the banks. Hobo Meter Depth (m): _____ Take a photo to document conditions (at transects A, F, and K, if possible). Notes:

Assessment of hydrologic states

Site: 190L -	SA	Lat:	Long:	Date: OS/R/Zez
Observer(s): SP	MC			
Flow habitats: Estimat Ode (2007). Total mus		h habitat type o	across the entire re	ach, to within 5%. Definitions follow
Cas	cades Rapids Riffle	s Runs	Glides Po	ools Dry
% of reach			10	90
Select the hydrologic	state that most closely mat	tches the domi	nant state of the re	each:
State (check one)	Description, indicators	A 3 17 18		
☐ Hyperrheic (flooding)	Water may be above bar particles may occur.	nks and turbid o	or carrying suspend	led particles. Movement of streambed
☐ Eurheic (baseflow)	Water always below ban most of the stream bed. runs, glides). Gravels will	Many different	flow microhabitat	e is high enough to allow access to s may be evident (e.g., riffles, pools, nbed.
☐ Oligorheic (limited flow)	Discharge is low but suffi Surface water is more or	icient to conne less continuou	ct pools and other s throughout reacl	aquatic habitats through small rivulet n. Riffles are scarce.
☐ Arheic (disconnected pools)	Discharge is close to zero disconnected. This state concrete channels.	o, may not be v may not exist i	isibly evident. Pool n sandy streams w	ls may be abundant, but may be ith rapid groundwater infiltration or in
Hyporehic (subsurface water)		neic life. Terrest	rial fauna may be	gh substrate may remain wet enough common on the stream bed. This state
□ Edaphic (dry)	support active hyporheic	c life (although	dessication-resiste	substrate (if present) is too dry to ent life stages may be present). Soil in nearby soils above the banks.
Hobo Meter Depth (m):			
Take a photo to docu	ment conditions (at transe	cts A, F, and K,	if possible).	
Notes:				54

Rincon/Ventura River Time Data Logger Field Sheet

	TMB2		Field Crew:							
			YSI Measurements							
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (µs)	Salinity (ppt)	
F10.21	0938	ON: 34.5/7790	= 17	US:	129	7.48	7.37	1060	0.53	
3.107		•w: 119. 2007 7		DS:V_						
Location De		•W:_/1 9 - 5 - 7								
	escription:									

Rincon/Ventura River Time Data Logger Field Sheet

Site ID:	TMBL	<u>P3</u>			Field Crew:	(-			_		
Deploymen	t / Mid /	Retrieval	•	Flow (circle one): Flowing/ Ponded/ Dry							
						YSI	Measurem	ents			
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinity (ppt)		
5.10.21	1507	°N: 37337373	- 23	US:	18.5	800	7.91	1069	0,53		
Location De	scription:										
1 8											
									-		
,			-			-					
									-		
14							-				
Comments:							7		***************************************		
	-		-,								
									7		
1.3		The second secon									

_	(M)2	Retrieval	* -		Fleid Crew:		/ Ponded/	Dry	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved	Measurem pH	Conductivity (µs)	Salinit (ppt)
5.10.24	1042.	ON: 34.390347	21	US:	19.4	755	7.98	1209	0,60
Location De	scription:							3 8 44	1.
								<u> </u>	-
Comments:	*-						-		,
							-		

Deploymen	t / Mid / I	Retrieval	2.0		Flow (circle o	ne): Flowing	/ Ponded/ D	Pry	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	YSI Dissolved Oxygen (mg/L)	Measureme pH	Conductivity (μs)	Salinit
5/10/21	1125	°N: 34.281816 °W: 119.309058	50	US:/_ DS:/	17.9	7,48	8.03	1486	0.75
ocation Des	scription:								
									-
		3 '			-				
Comments:	·····								
	-	•							

Site ID:		35T			Field Crew:	****			-
Deployment	/ Mid /	Retrieval			Flow (circle o	ne): Flowing,	/ Ponded/	Dry	
						YSI	Measurem	ents	-
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (µs)	Salinite (ppt)
5-10.21	1210	ON: 34,276964 OW: 119.309044		Us:V DS:	21.6	7.74	7.59	20,939	125%
5 (18-05-311									
Location Des	scription:	•	-						
				31.4					
Comments:				v		_			
and the state of t									
					-(0)				
	_							J. 10	

Site ID:	MOL	RY			Field Crew:	In 20	J. M	onr	_
Deployment	Mid/	Retrieval			Flow (circle o	ne): Flowing,	/ Ponded/ D)ry	•
	_					YSI	Measureme	ents	1
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (µs)	Salinity (ppt)
5/18/21	1110	°N:	15	US: DS:	19.0	8-63	709	1041	0,52
Location De	scription:								
	-					-	-		
			1-1-						
Comments:									- 46

Site ID:	NOZ_	R3			Field Crew:				-
Deployment	(Mid)	Retrieval			Flow (circle o				
						YSI	Measurem	ents	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (µs)	Salinity (ppt)
5-7747	1138	°N:	-21	US:	18.6	7.61	7.43	1062	Ø.53
Comments:									
1.61									

Deployment	Mid / R	etrieval			Flow (circle o	ne): Flowing	/ Ponded/ I	Dry	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	YSI Dissolved Oxygen (mg/L)	Measurem pH	Conductivity (µs)	Salinit (ppt)
5-17-21	1201	°N:	_ 29	US:	19.4	7,09	759	1175	0.59
Comments:	14.1		×						0
							V		

Date Time Coordinates Depth (cm) Photos (°C) Oxygen pH (μs) (ppt)	Deployment	(Mid) F	Retrieval			Flow (circle o	ne): Flowing	Ponded/ [Dry	
Date Time Coordinates Depth (cm) Photos Water Temp (°C) Oxygen (mg/L) PH Conductivity (μs) (ppt) (ppt) (mg/L) (μs) (μs) (ppt) (mg/L) (μs) (μs) (ppt) (mg/L) (μs) (μs) (ppt) (mg/L) (μs) (μs) (ppt) (mg/L) (ppt) (pp							YSI	Measureme	ents	
	Date	Time	Coordinates	Depth (cm)	Photos		Oxygen	рН		Salinity (ppt)
	5-17-21	1231		- 32		17.8	855	7.70	1476	0.75
	ocation Des	scription:								- 18
	ocation Des	scription:								- 18
	ocation Des	scription:								- 18
	ocation Des	scription:								
	ocation Des	scription:								
omments:										
omments:										
Comments:										

Site ID:	TMOZ	357			Field Crew:				-
Deployment	Mid / R	etrieval			Flow (circle or				
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	YSI Dissolved Oxygen (mg/L)	Measureme pH	Conductivity (µs)	Salinity (ppt)
5.17.21	1249	°N:	-	US:	229.	14 49	8.20	1215	6-16
Comments:									
	1 Å								

						YSI	Measureme	nts	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinit (ppt)
		Ont	_ 17	us: V	17 /	1 00			
5-26-21	083	°N:	_	DS:	17-6	6.33	7.28	1079	0.50
52621	083		_	1/	11-6	4.33	7,28	10-77	0.54
				1/	11-6	4.33	7,28	10-77	0.54
				1/	11-6	4.33	7,28	10-77	0.54
				1/	11.6	4.33	7,28	10-77	0.54
				1/		4.33	7,28	10-77	0.54
ocation Des				1/		6.33	7,28	10-77	0.5.

ehioyiiieiit	: / Mid / 🤄	etileval			Flow (circle or		Measureme		
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinit (ppt)
		0-4	1.6	US:	1611	7 09	210-	1.01	
126.21	ton	°N:	- 18	DS:	18.4	7.09	7.18	196	0.55
		⁶ W:		DS:	18.4	7.01	118	109	0.55
				DS:	18.4	7.01	118	109 (0.55
		⁶ W:		DS:	18.4	7.01	118	109 (0.55
		⁶ W:		DS:	18.4	7.01	118	109 (0.55
		⁶ W:		DS:	18.4	7.01	118	109	0.55
		⁶ W:		DS:	18.4	7.01	118	109	0.55
cation Des	scription:	⁶ W:		DS:	18.4	7.01	118	109	0.5.

Site ID:	MDL-	-R2			Field Crew:				_
Deploymen	t / Mid /	Retrieval			Flow (circle or	ne): Flowing,	/ Ponded/ D	ry	
						YSI	Measureme	nts	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinity (ppt)
5.26.21	1039	°N:	- 25	US:	19.4	7.32	7.45	1247	0.62
Location De	scription:						A J		
Comments:									
									

eployment)	: / Mid /	Retrieval			Flow (circle or	ne): Flowing,	/ Ponded/ [Dry	
						YSI	Measureme	ents	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinit
5-26-21	1144	°N:		us: V	16.9	3.38	Z.35	499.75	32.7
		°W:		DS:					
			_	DS:					
ocation De		°W:							
ocation Des	scription:								
ocation Des	scription:								

Deployment / Mid / Retrieval				Flow (circle o					
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	Measureme pH	Conductivity (µs)	Salinit (ppt)
5-26-21	MIL	°N:	_ 32_	US:	18-0	7:11	7.75	1548	0.78
							-		
ocation Des	cription:								
ocation Des	cription:								
ocation Des	cription:								
ocation Des	cription:								
comments:									

Ventura River Algae TMDL Event Details

EVENT DETAILS	
Event ID (Month Year):	Date: 6 (109 / 202)
Crew Members: SP MC	
Weather (circle): Clear / Partly Cloudy / Overcast / Showers / Rain / Of	ther
Event Type (check): Dry (<0.1" rain per day for the preceding the	nree days)
□ Wet (days with ≥0.1" rain and the three day	ys following)
Notes :	
) Ť	
ODSSERVATION SITES (DIVER SLOW)	
OBSERVATION SITES (RIVER FLOW)	
Ventura River at Highway 150 (Baldwin Road)	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
Vantuus Diagraph Courts Ave Blad	
Ventura River at Santa Ana Blvd Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	Priotos raken. Opstream / Downstream
Ventura River at Casitas Vista Road	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Notes:	
Additional Observation Site:	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
UNSAMPLED TMDL SITES	
THE CI	
Site ID: Time: (S8.30 cfs) Flow Status (Dry Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream Downstream
Reason not sampled (if flowing):	
Notes:	
TUD1-51	
Site ID:	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):Notes:	
Notes.	
Site ID: Time:	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):	
Notes:	
Sito ID:	Photos Takon, Unstroam / Downstroam
Site ID: Time: cfs) Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Reason not sampled (if flowing):	
Notes:	

Assessment of hydrologic states

Site: TMDL-St	Lat: 34, 2287 Long: 119, 1844 Date: 06/09/201
Observer(s):	> MC
Flow habitats: Estima Ode (2007). Total mu	ate the percent cover of each habitat type across the entire reach, to within 5%. Definitions follow ust equal 100%.
Ca	scades Rapids Riffles Runs Glides Pools Dry
% of reach	20 80
Select the hydrologic	state that most closely matches the dominant state of the reach:
State (check one)	Description, indicators
☐ Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
□ Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
☐ Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.
Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
□ Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Hobo Meter Depth	(m):cument conditions (at transects A, F, and K, if possible).
Notes:	Amenic conditions (ac cranscos / y / y and / y / p Person)

		Assessment of hydrologic states
Site:_	TMDL-(Lat: 34,3472 Long: 119,286384 Date: 06/09/2014
Obse	rver(s):SP	MC
	habitats: Estimat (2007). Total mus	the percent cover of each habitat type across the entire reach, to within 5%. Definitions follow equal 100%.
	Cas	ades Rapids Riffles Runs Glides Pools Dry
% of	reach	100
Selec	ct the hydrologic	tate that most closely matches the dominant state of the reach:
State	(check one)	Description, indicators
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets Surface water is more or less continuous throughout reach. Riffles are scarce.
0	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
A	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
		n): ment conditions (at transects A, F, and K, if possible).
Not	es:	
1		
e e		A.P

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Event ID (Month Year):		ist ivieasureme	nt = left bank (i	looking downstream			
Site ID: TMDL-R1	\ Velocity Are	a Method (pre	ferred)/	Buoy (Use only if vel	yant Object ocity area m		ossible)
Date/Time: 06/09/2004 1:40 Crew Members: SP ME	Distance		Velocity		Float 1	Float 2	Float 3
Crew Members:	No. from Le		(ft/sec)	Distance (ft)			
Latitude/Longitude: 34, 28/13 119, 300-18	1		1	Float Time (sec)			
Flow (circle one): Flowing / Ponded / Dry	2	1		Float	each cross	Section (ft)	
Wind Strength: Calm Light Breeze / Moderate Breeze / Strong Breeze / Windy	3	1			Upper	Middle Section	Lower Section
Wind Direction: Blowing (circle one) From / To				100 101	Section	Section	Section
Photos (check): Upstream Downstream Notes (e.g. homeless, wildlife, horses, swimming/recreation,	4			Width	1		
	5			Depth 1			
Reple recently in water playing	6			Depth 2			
1 10	7	1/	2	Depth 3			
-	8	X	C+	Depth 4			
		/\	11	Depth 5			1
January—December Monthly In Situ Measurements:	9			May—September:	Algae Colle	ection for C	Morophyll a
pH: pH units	10			Reach Length (150			
DO:	11		17	if wetted width > 1	0 m):		
Water Temp: °C	12		3	Collect	ion Device	/	Quantity
Flow (from discharge measurement):efs	13	1	10	(sum # trans		vice)	
		1		Rubber Delimiter (Area=12,6c	m²)	
1	14	1		PVC Delimiter (Are	a=12.6cm ² \		
Samples Collected (check box) January—December Monthly Water:	15		\				
Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as	16		1	Syringe Scrubber (A	Area=5.3cm	1*)	
Nitrogen (unfiltered):	17 /			Other (Area=	1	1	
Dissolved Phosphorus and Nitrogen (field filtered):	18			Number of Transec	ts Sampled	(0-11)	
May Cantombas Dry Conces Monthly Algani	/19			Composite Volume	(mL)	1	
May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): □	/		1	Chlorophyll a Volum	me		
55. 5 (5.5 G.B25).	20			(usé GF/F filter, 25		ed volume)	

Ventura River Algae TMDL Field D

heet (Reaches 1—4) - Page 1 of 1

Event ID (Month Year): The Zou		1st	Measuremer	nt = left bank	(looking downstream)			
Site ID:	Vel	ocity Area M	lethod (pref	ferred)	Buoy (Use only if vel	vant Object		ossible)
Crew Members: SP MC	No.	Distance from Left	Depth (ft)	Velocity		Float 1	Float 2	Float 3
	1/0.	Bank (ft)	Deptii (it)	(ft/sec)	Distance (ft)			
Latitude/Longitude: 34/331389 1/1.297272	1		1		Float Time (sec)	/		
Flow (circle one): Flowing / Ponded / Dry Wind Strength:	2		1		Float R	each Cross	Section (ft)	
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	3	1		0		Upper Section	Middle	Lower
Wind Direction: Blowing (circle one) From To		1	1	7		Section	Section	Section
Photos (check): □ Upstream □ Downstream Notes (e.g. homeless, wildlife, horses, swimming/recreation,	4		1		Width			
discharge comments, etc.) :	5		1		Dept) 1			
	6				Depth 2			
T	7	1	130	M	pepth 3			
	<u> </u>	1	1	771	Depth 4			
	8		M		Depth 5			
January—December Monthly In Situ Measurements:	9		Y					
pH: 187pH units EC:pS/cm	10		\wedge	1	May-September:			-
DO: \$15 mg/L SC: 1260 μS/cm	11			17 11	Reach Length (150			5 m; 250 m
00:% Salinity: <u>0 63</u> ppt	11	1	1	10	if wetted width > 10) m):	/	
Water Temp: 19.5 °C	12		- \	\sim	Collecti	on Device	/	Quantity
Flow (from discharge measurement):efs	13		1		(sum # transe	ects per De	vice)	
	14	1	1		Rubber Delimiter (A	rea=12.6c	m²)	
Samples Collected (check box)	15	1	1		PVC Delimiter (Area	=12.6cm ²)		
January—December Monthly Water:	45	1			Syringe Scrubber	rea=5.3cm	21	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16	/			/		1	
Nitrogen (unfiltered):	17			1	Other (Area=		1	
Dissolved Phosphorus and Nitrogen (field filtered):	18/				Number of Transect	ts Sampled	(0-11)	
May—September Dry Season Monthly Algae:	1/9				Composite Volume	(mL)		
Chlorophyll <i>a</i> (filters—algae):	/20				Chlorophyll a Volun (use GF/F filter, 25 i		ed volume)	
					luse Gryr Iliter, 25	ur breierr	eu voiume)	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Event ID (Month Year): Som Low		1st	Measuremer	nt = left bank (looking downstream)			
Site ID: TMDL-R3	Ve	locity Area N	lethod (pref	erred)	Buoy (Use only if velo	ant Object		ossible)
Date/Time:		Distance from Left	Donath (ft)	Velocity		Float 1	Float 2	Float 3
Crew Members.	No/	Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)		/	
Latitude/Longitude: 34.345495 -19.299382	1	22 (10)			Float Time (sec)	/		
Flow (circle one): Flowing Ponded / Dry		1		/	Float Re	each @ross	Section (ft)	
Wind Strength: Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	2	1	1 1			Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3			Cy		Section	Section	Section
Photos (check): Downstream	4	1		2	Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5				Depth 1	1		
discharge comments, etc.) :	6	1	1	4	Depth 2			
	-	1	1		Depth 3			
	7	*	/		Depth 4	\		
	8		N .		Depth 5			
January—December Monthly In Situ Measurements:	9			Cd				
pH: 777 pH units ΕΕ: μs/cm	10	1		4	May—September:			
DO: <u>' 8.70</u> mg/L SC: <u>V96</u> μS/cm	11			M	Reach Length (150 if wetted width > 10			J III; 250 III
D O:% Salinity: <u>Ø. 55</u> ppt Water Temp: <u></u> °C		1		-				/
Flow (from discharge measurement):cfs	12	- /	1	10	(sum # transe	on Device	wicol/	Quantity
	13				1		/	
	14				Rubber Delimiter (A	1/		
Samples Collected (check box)	15	1	1		PVC Delimiter (Area	=12.6cm ²)		
January—December Monthly Water:	16	1			Syringe Scrubber (A	rea=5.3cm	2)	
Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as	1			1	Other (Area=		1	
Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered):	17				Number of Transect	ta Camplad	(0.11)	
Dissolved Filospholus and Nitrogen (neid intered).	18				-		(0-11)	
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)		
Chlorophyll a (filters—algae): □	20				Chlorophyll a Volun	ne		1
					(use GF/F filter, 25 i	mL preferr	ed volume)	1

Ventura River Algae TMDL Field D

heet (Reaches 1—4) - Page 1 of 1

Event ID (Month Year): June 2021		1st l	Measuremer	nt = left bank (l	ooking downstream)			
Site ID: TMDL-RU Date/Time: 16/09/2011 09 00	\ Ve	locity Area M	lethod (pref	erred)	Buoy (Use only if velo	ant Object		ossible)
Crew Members:		Distance	Donah (fr)	Velocity		Float 1	Float 2	Float 3
	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)		1	
Latitude/Longitude: 34.374788 -119.38626	1	01/			Float Time (set)			
Flow (circle one): Flowing / Ponded / Dry Wind Strength:	2	M	1	In	Float Re	ach Cross	Section (ft)	
Calm/Light Breeze / Moderate Breeze / Strong Breeze / Windy	3	1/1	1	12		Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To		1 10	7	7		Section	Section	Section
Photos (check): Upstream Downstream	4				Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.) :	5				Depth 1			
discharge comments, etc.)	6				Depth 2			
	7		1		Depth 3			
	-		-		Depth 4		1	
	8				Depth 5			
January—December Monthly In Situ Measurements:	9							
pH: 704 pH units EC: µ5/cm	10	X			May-September:			-
DO: 5.95 mg/L SC: 1081/ μS/cm	11	/			Reach Length (150			m; 250 m
DO:		-			if wetted width > 10	m):	_/	
Water Temp:°C	12				Collecti	on Device	/	Quantity
Flow (from discharge measurement): cfs	13		1		(sum # transe	ects per De	vice)	
	14		1		Rubber Delimiter (A	rea=12.6cr	n²)	
Samples Collected (check box)	15	/	1		PVC Delimiter (Area	=12.6cm ²)		
January—December Monthly Water:	15	1	1		Syringe Scrubber (A	rea=5 3cm	2)	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16	/			/	3.5011	\	
Nitrogen (unfiltered):	17 /				Other (Area=		X	
Dissolved Phosphorus and Nitrogen (field filtered):	18/				Number of Transect	s Sampled	(0-11)	
May—September Dry Season Monthly Algae:	1/9				Composite Volume	(mL)		
Chlorophyll <i>a</i> (filters—algae):	20				Chlorophyll a Volum			
		Au .			(use GF/F filter, 25 r	nL preferre	d volume)	

Ventura River Algae TMDL Field Data Sheet (Estuary) - Page 1 of 1

Ventura River Algae TMDL—Estuary Details Site ID: TMDL-Est Date/Time: 06/19/202 1220 Event ID (Month Year): Sinc Zeru Crew Members: ___ Ocean Inlet (circle one): Open / Restricted / Closed Weather (circle one): Clear / Partly Cloudy / Overcast / Rainy / Foggy Time of High Tide: 1034 Time of Low Tide: 1503 Direction of Tide: Ebb / Flood / Slack / N/A Wind Direction: Blowing From / To Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze / Windy / Strong Wind Notes (e.g. homeless, wildlife, dogs, swimming/recreation): homeless champment Water Samples Collected (check box) In Situ Measurements (Measure at Floating Macroalgae Quadrat 1, Transect 1) [Collect at Floating Macroalgae Quadrat 1, Transect 1] Monthly (Jan-Dec): Water Temp: 20.5 °C Monthly Water (Jan-Dec): 8.27 pH units Nitrogen, total and dissolved: **Σ**[μS/cm

Photos: Oceanward Landward	
Sample Latitude:	34.274995
Sample Longitude	-119.307443

Phosphorus, total and dissolved: Nitrate + Nitrite as Nitrogen:

Ventura River Algae TMDL Field Data Sheet (Reaches 1-4) - Page 1 of 1

Event ID (Month Year):		1st		s charge Mea s nt = left bank	surement (looking downstream)			
Site ID:		Velocity Area	/lethod (pref	erred)		Buoyant Object Method (Use only if velocity area method not possible)			
Date/Time:	No	Distance from Left	Depth (ft)	Velocity		Float 1	Float 2	Float 3	
	11	Bank (ft)		(ft/sec)	Distance (ft)				
Latitude/Longitude:	1				Float Time (sec)				
Flow (circle one): Flowing / Ponded / Dry Wind Strength:	2			al 5	Float R	each Cross	Section (ft)		
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy					A	Upper	Middle	Lower	
Wind Direction: Blowing (circle one) From / To	3			A. C.		Section	Section	Section	
Photos (check): Upstream Downstream	4		AL PROPERTY OF THE PARTY OF THE		Width				
Notes (e.g. homeless, wildlife, horses, swimming/recreation	5		1		Depth 1				
discharge comments, etc.):	11	-	and the same of th	9	Depth 2				
	1								
	7	X			Depth 3				
					Depth 4				
	7/0	1			Depth 5				
January—December Monthly In Situ Measurements:	9	-							
pH:pH units EC:μS/cm DO:mg/L SC:μS/cm	10				May—September:				
DO: % Salinity: ppt	11		1		Reach Length (150 if wetted width > 10			J m; 250 m	
Water Temp:°C	12		1						
Flow (from discharge measurement):cfs						on Device		Quantity	
	13				(sum # transe				
	14			1	Rubber Delimiter (A	rea=12.6cr	n²)		
Samples Collected (check box)	15				PVC Delimiter (Area	=12.6cm ²)			
January—December Monthly Water:	1				Syringe Scrubber (A	roo_F 3	21		
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16					rea=5.3cm	1		
Nitrogen (unfiltered):	17				Other (Area)		
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transect	s Sampled	(0-11)		
May Sandahan Day Sanan Manakha Ma	1			-	Composite Volume	(ml)			
May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae):	19						-		
Chlorophyll a (filters—algae):	20				Chlorophyll a Volum		1		
	_				(use GF/F filter, 25 r	n <mark>L pre</mark> ferre	d volume)		

Rincon Ventua River TMDL Field Data Sheet

Sample Date: 7/14/201

Sample Crew: SPSHMC, MD

Sta	tion ID:	RH	R-3					
San	nple Time:	0750	000					
Col	lection Method: (Circle method)	Standard MCM						
Device	Rubber delimiter (area=12.6cm2)	9	8					
	PVC Delimiter (area=12.6cm2)	8	3					
Collection	Syringe Scrubber (area=5.3cm2)	7	8					
Nu	mber of transects sampled (0-11)							
Cor	mposite Volume (mL)	420	450					
Chl	orophyll a volume (25 mL preferred)	25	25					

Rincon Ventu _ River TMDL **Field Data Sheet**

Sample Date: 07/15/2014
Sample Crew: SP, SH, MG SS

Stat	tion ID:	RZ	RZDU	R1	EST			
San	nple Time:	0740	0740	1025	1215			
Col	lection Method: (Circle method)	Standard MCM						
Device	Rubber delimiter (area=12.6cm2)	7	5	6				
	PVC Delimiter (area=12.6cm2)	2	4	5				
Collection	Syringe Scrubber (area=5.3cm2)	2	2	D				
Nur	mber of transects sampled (0-11)	11	11	11				
Composite Volume (mL)		426	360	500	000			
Chl	orophyll a volume (25 mL preferred)	25	25	25	1000			

omments:			
	4		

Ventura River Algae TMDL Event Details

ENCART DETAILS	
EVENT DETAILS	27/W/201
Event ID (Month Year):	Date: 07/14/201
Crew Members: SP SH MC MD	
Weather (circle): Clear / Partly Cloudy / Overcast / Showers / Rain / Oth	
Event Type (check): (<0.1" rain per day for the preceding the	
□ Wet (days with ≥0.1" rain and the three days	s following)
Notes :	
OBSERVATION SITES (RIVER FLOW)	
Ventura River at Highway 150 (Baldwin Road)	Photos Takon, Unstroom / Downstroom
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
Name of the state	
Ventura River at Santa Ana Blvd Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:Cis)	Photos Taken. Opstream / Downstream
THORES.	
Ventura River at Casitas Vista Road	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
Additional Observation Site:	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
UNSAMPLED TMDL SITES	
Site ID: 7MDL-CL Time: 0710	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):	
Hotes	
Site ID: TMDL SA Time: 0915	Photos Taken: Upstream / Downstream
Flow Status : Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):	
Notes:	
Site ID: Time:	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):	
Notes:	
Cita ID.	Photos Tokona I potrocom / Downstroom
Site ID: Time: cfs)	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs) Reason not sampled (if flowing):	
Notes:	

Assessment of hydrologic states

Site:_	TMOL	CL Lat: 34,34 2064 Long: -119, 286313 Date 07/14/2024						
Obse	ver(s):	SH, MC, MD						
Flow habitats: Estimate the percent cover of each habitat type across the entire reach, to within 5%. Definitions follow Ode (2007). Total must equal 100%.								
A ST	Cas	cades Rapids Riffles Runs Glides Pools Dry						
% of I	reach	0%						
Selec	t the hydrologic	state that most closely matches the dominant state of the reach:						
State	(check one)	Description, indicators						
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.						
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.						
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.						
	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.						
	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels						
×	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.						
		m): ment conditions (at transects A, F, and K, if possible).						
INOTE								

Assessment of hydrologic states

Site:_	TMDL-	SA	Lat: <u>34 .2283</u>	3Z Long	-119.184	1463 Date:_	07/14/200
Obser	ver(s):	SH, MC, MD					
	habitats: Estimat 2007). Total mus	e the percent cover of eat equal 100%.	ach habitat type <i>ac</i>	ross the enti	re reach, to	within 5%. Defir	nitions follow
	Cas	cades Rapids Rif	fles Runs	Glides	Paols	Dry	
% of r	reach			16		90	
Selec	t the hydrologic	state that most closely m	natches the domina	nt state of th	ne reach:		
State	(check one)	Description, indicators			CHANGE OF	A STATE OF THE STA	
	Hyperrheic (flooding)	Water may be above b particles may occur.	anks and turbid or	carrying susp	ended part	icles. Movemen	t of streambed
	Eurheic (baseflow)	Water always below be most of the stream be- runs, glides). Gravels w	d. Many different f	low microhal	oitats may b	n enough to allo e evident (e.g.,	w access to riffles, pools,
	Oligorheic (limited flow)	Discharge is low but su Surface water is more					h small rivulets.
	Arheic (disconnected pools)	Discharge is close to ze disconnected. This star concrete channels.					
X	Hyporehic (subsurface water)	Most of the stream be to support active hypo may not exist in concr	rheic life. Terrestri	al fauna may			
	Edaphic (dry)	The entire stream bed support active hyporh moisture in the stream	eic life (although d	essication-re	sistent life s	tages may be pr	esent). Soil
Hobo	o Meter Depth (r	n):					
Take	a photo to docu	ment conditions (at tran	sects A, F, and K, if	possible).			
Note	s:						

Ventura River Algae TMDL Field D

Sheet (Reaches 1—4) - Page 1 of 2

Discharge Measurement

1st Measurement = left bank (looking downstream)

Event ID (Month Year):		150	Wicasarchic	it - icit baik	(looking downstream)		
Site ID: TMV -R1	Velocity Area Method (preferred) Buoyant Object Method Use only if velocity area method not poss							/
Date/Time: 07/15/201 1025 Crew Members: SP 5H, MG SS	No	Distance from Left	Depth (ft)	Velogity	Dise only if vel	Float 1	Float 2	Float 3
	1	Bank (ft)	Deptil (ie)	(ft/sec)	Distance (ft)			
Latitude/Longitude: 34.281916 -119.308509	1				Float Time (sec)		/	
Flow (circle one): Flowing Ponded / Dry		1		-	Float R	each Cross S	Section (ft)	
Wind Strength:	2			/			1	
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	3					Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To		1		10		Section	Section	Section
Photos (check): Upstream Downstream	4			7	Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5		/		Depth 1			
A made comments, etc.): bether in water	6	1	/	-2.7	Depth 2		1	
daming Beat shertened		· ·	/	7	Depth 3		1	
, , , , , , , , , , , , , , , , , , ,	7		\ /	M	Depth 4			
	8		V	1,1	-			1
	1 9		\wedge	-	Depth 5			1
January—December Monthly In Situ Measurements:	9			M		event a tree		
pH: 8.24 pH units EC: µS/cm	10	1		3	May—September:	120		
DO: 7.12 mg/L SC: 1617 µS/cm	11	1	1	10	Reach Length (150			J m; 250 m
BO: Salinity: ppt		-		\	if wetted width > 10	/ m):		
Water Temp:°C	12	/		\	Collecti	on Device		Quantity
Flow (from discharge measurement)crs	13				(sum # transe	cts per Dev	ice)	
	14	1.			Rubber Delimiter (A	rea=12.6cm	1 ²)	6
Samples Collected (check box)	15	1			PVC Delimiter (Area	=12.6cm ²)		5
January—December Monthly Water:	15	/		-	Suriana Sarubban (A.	5 2 2)		
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16			\	Syringe Scrubber (A	rea=5.3cm)		0
Nitrogen (unfiltered):	17/			/	Other (Area=)	
Dissolved Phosphorus and Nitrogen (field filtered):	1/8				Number of Transect	s Sampled ((0-11)	11
May—September Dry Season Monthly Algae:	/19				Composite Volume	(mL)		500
Chlorophyll a (filters—algae):	/ 20			-	Chlorophyll a Volum	ie		75
					(use GF/F filter, 25 n	nL preferred	d volume)	630

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 2 of 2

		Macroalgae	Presence/Abs	nd Water Depth	ı (cm)	Densiometer (0-17) Count covered dots				Photo (✓ when Taken)	
Transect	Wetted Width (m)	Left Bank	Left Center	Center	Right Center	Right Bank	Center Left	Center Upstream	Center Right	Center Downstream	Upstream/ Downstream
Α	3.7	CIA	32-/A	54/A	63/ A	014	10	6	5	0	1/2
AB	3.1	OIA	36 A	25114	32/4	OLA			2.4		
В	25	>1A	18/A	25/A	24 A	OLA	16	1>	12	8	
ВС	4.1	OLA	18/A	24 LA	20/P	014			13.1		
С	28	OP	48/A	41/A	24/A	OIA	17	8	9	10	The Line
CD	2.0	OLA	17/A	AFE	27/A	OLA					
D	1.7	O/P	8/P	19/A	151A	CIA	17	1>	()		
DE	38	OIA	MP	201A	DelA	CVA					
E	1.5	OLA	13/P	151A	15/p	9/P	1>	15	1>	13	
EF	2.0	OIA	DONA	SHIA	30/p	OIA			BY 5	A 1 - 3	de l'agre
F	6.0	OIA	AKE	19/A	25/A	O(A	10		3	2	3/4
FG	60	O/A	23/A	31/A	LA/A	OLA	U. A.		1-1-6		
G	6.3	OIA	AFE	56/A	SOVA	0/A	13	17	1>	14	
GH	6.5	OLA	56/A	82/5	67/4	0/4	I Mass				
Н	6.5	OIA	(81/P	73/P	10/A	OlA	17	17	[7	1>	
н	レン	ULA	67/A	69/A	>3(A	CIA	SE 3				
1	2.5	OIA	451A	ZIIA	21/A	OIA	17	(>	17	17	
IJ	20	OlA	16/A	15/P	151A	0/A	41.4700				
J	2.7	OIA	10/A	16/P	16/A	OlA	17	17	P	17	
JK	26	OIA	SIA	19/P	18/A	OIA	CHE	Byara			الله الله
K	21	OIA	18/A	18/A	13/4	OIA	17	1)	1)	1)	5/6

Ventura River Algae TMDL Field D. Sheet (Reaches 1—4) - Page 1 of 2

Event ID (Month Year):	150	ivieasuremer	nt = left bank (looking downstream)				
Site ID: TMDL- RZ	Velocity Area N	/lethod (pref	erred)	Buoy Use only if vel	ant Object		ossible	7
Date/Time: 07/15/1000 0746 Crew Members: SP SH MC 55	No. Distance from Left	Depth (ft)	Velocity		Float 1	Float 2	Floa	
Latitude/Longitude: 34,339412 7/9,297/22	Bank (ft)		(ft/sec)	Distance (ft)		/		_
Flow (circle one): Flowing / Ponded / Dry	1			Float Time (set)				_
Wind Strength:	2			Float Ro	each Cross	Section (ft		
Calm/ Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From / To	3	/			Upper Section	Middle Section	Low Secti	
Photos (check): Upstream Downstream	4	/	7	Width				
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5		7	Depth 1	1 (-1)			
Dip site for nettrounder theme Encemonant from Box (-14)		/		Depth 2				
Prismment from Society	6	\backslash		Depth 3				
Phone of the Barbara	7	X	#	Depth 4			1	\exists
	8		1	Depth 5				7
January—December Monthly In Situ Measurements:	9 /		141					=
pH: 7.6 pH units EC: µS/cm	10		10	May—September: A	_			
DO: <u>6.5%</u> mg/L SC: <u>1274</u> μS/cm DO: % Salinity: 0.64 ppt	11 /			if wetted width > 10		- 45	-	Up Sil
DO:%Salinity:ppt Water Temp:8 ℃	12			Collecti	on Device		Qua	ntity
Flow (from discharge measurement):cfs	13			(sum # transe	ects per De	vice)		
	14	1		Rubber Delimiter (A	rea=12.6cr	n²)	5	7
Samples Collected (check box)	15			PVC Delimiter (Area	=12.6cm ²)		4	2
January—December Monthly Water:	16		1	Syringe Scrubber (A	rea=5.3cm ²	2)	2	2
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as			\	Other (Area=)	-	
Nitrogen (unfiltered):	17/					,		7.1
Dissolved Phosphorus and Nitrogen (field filtered): 💢	1/8			Number of Transect	s Sampled	(0-11)	111	117
May—September Dry Season Monthly Algae:	<u>/19</u>			Composite Volume	(mL)		50	410
Chlorophyll a (filters—algae):	/20			Chlorophyll <i>a</i> Volum (use GF/F filter, 25 r		ed volume)	2	5 x

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 2 of 2

Ventura River Algae TMDL Transect Measurements (for percent cover, May—September)

Ventura miger A	Sac HAIDE Hallacet Micas	dicincints froi percent cover, i	at september/
Site:	Date: _	7/15/21 Cr	w:

		Macroalgae	Presence/Abs	ence (P/A) ar	nd Water Depth	n (cm)		Densiometer (0-17) Count covered dots				
Transect	Wetted Width (m)	Left Bank	Left Center	Center	Right Center	Right Bank	Center Left	Center Upstream	Center Right	Center Downstream	Upstream/ Downstream	
Α	7.0	0/4	36/A	31/A	65/A	11/4	11	16	17	14	V2	
AB	6.0	0/A	29/4	44/A	401A	1/4						
В	3.2	OLA	SIA	W/P	22/A	O/A	17	1>	17	16		
ВС	4.2	OIA	1X/A	41/P	18A	CVA.		。		11-12-77-18		
С	3,4	OIA	34/A	SU/A	50/4	OIA	1>	17	1>	1>	(navivi	
CD	27	NA	NA	LIG/A	35/P	014	18.83					
D	4.1	OIA	ZIA	28/A	30/A	OIA	17	1)	1>	1>		
DE	41	17/P	5/p	WP	23/A	CILA	E II TO		100			
E	5.0	OP	30/P	15/P	19/A	OP	8	7	8	15		
EF	40	11/A	WP	DOMP	73/P	OA	No.	9 - 2		Charles		
F	50	O/P	36/P	45/A	55/A	OP	17	>	10	14	3/4	
FG	>.5	OP	UNP	SUA	SOLA	0/4			*			
G	5.0	0/A	SXP	37/A	SIJA	OLA	8	8	8	7	Mary Mary	
GH	4.7	C/A	43/A	4618	15/P	OVA						
Н	5.0	OIA	ABU	5/14	59/A	O/P	1)	17	17	17		
н	47.	Q/A	16/P	34/A	27/P	OIT	225			and the	No.	
1_	55	OPA	UIA	27/A	Held A	CIA	17	17	17	>	ALM PAR	
IJ	5.1	NA	30/A	20/A	10/A	0/4			5.4	- Each		
J	3.2	O/A	LOP	53/A	25/4	CIA	14	17	1)	12	10 210	
JK	5.0	O/A	751A	23/A	OA	CIA				The said	1 1-14	
K	6.4	NA	33/A	15/0	10/p	OIA	7	11	12	9	5/6	

Ventura River Algae TMDL Field D.

Sheet (Reaches 1—4) - Page 1 of 2

Discharge Measurement

1st Measurement = left bank (looking downstream)

Event ID (Month Year):	1st Measurement = left bank (looking downstream)							
Site ID: TMPL-R3	Velocity Area M	/lethod (pref	erred)	Buoy (Use only if velo	ant Object		ossible/	
Date/Time: 07/4/701 1000	Distance		Velocity		Float 1		Float 3	
Crew Members: SP, SH, MC, MD	No. from Left	Depth (ft)	(ft/sec)	Distance (ft)		/		
Latitude/Longitude: 34345458 -19.29934	Bank (ft)		/	Float Time (sec)		/		
Flow (circle one): Flowing / Ponded / Dry	1				ach Cross	Section (ft)		
Wind Strength:	2			Tioat in	1			
Calm) Light Breeze / Moderate Breeze / Strong Breeze / Windy	3			9	Upper Section	Middle Section	Lower Section	
Wind Direction: Blowing (circle one) From / To Photos (check): Upstream Downstream	4	1	3	Width	7			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,		1		1	,	1		
discharge comments, etc.): 4 10 m downsteen	5			Depth 1				
V-12-1	6			Depth 2				
	7	1		Depth 3				
	<u> </u>	1	T	epth 4				
	8		111	Depth 5			1	
January—December Monthly In Situ Measurements:	9	V	1	/				
pH: 7772 pH units EC: µS/cm	10	1	M	May—September:	Algae Colle	ction for C	hiorophyll	
DO: 30 mg/L SC: 1127 μS/cm		1	1	Reach Length (150			0 m; 250 m	
90:% Salinity: 0.56 ppt	11		(2	if wetted width > 10) m):	150		
Water Temp: <u>20, 8</u> °C	12		/	Collecti	on Device		Quantity	
Flow (from discharge measurement): cfs	13			(sum # transe	ects per De	vice)		
	14			Rubber Delimiter (A	\rea=12.6ci	m²)	8	
Samples Collected (check box)	15			PVC Delimiter (Area	a=12.6cm²)		3	
January—December Monthly Water:	13			Syringe Scrubber (A	roa-E 2cm	21	~	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16 /				11ea~3.3CIII		10	
Nitrogen (unfiltered):	17/	1		Other (Area=)		
Dissolved Phosphorus and Nitrogen (field filtered):	1/8			Number of Transect	ts Sampled	(0-11)	lh	
May—September Dry Season Monthly Algae:	/19			Composite Volume	(mL)		450	
Chlorophyll a (filters—algae):	/ 20			Chlorophyll a Volun	ne		15	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 2 of 2

Ventura River Algae TMDL Transect Measurements (for percent cover, May-September)

-	william Libac	THIDE THATSECT MEASUREMENTS (10) PERCENT	.ouci, ividy	SCPECIFICE	
Site:	63	Date: 7/14/21	Crew:		

		Macroalgae	Presence/Abs	ence (P/A) ai	nd Water Depth	n (cm)		Densiometer (0-17) Count covered dots			
Transect	Wetted Width (m)	Left Bank	Left Center	Center	Right Center	Right Bank	Center Left	Center Upstream	Center Right	Center Downstream	Upstream/ Downstream
Α	4.2	OD	ICIA	15/4	19/P	0/P	10	15	11	14	3/5
AB	50	OIA	10/A	18/A	10/P	OLA					
В	60	0/0	16/P	DOIP	10 P	CIA	11	15	1>	7	The state of
ВС	5.1	OJA	17/4	OIA	16/A	OLA					
С	5.0	CIA	23/A	15/A	14/4	OIA	4	4	5	4	
CD	60	1/A	XIA	13/P	151A	OLA					
D	6-1	CIP	2/p	16/A	20/A	OIA	4	4	3	1	
DE	6.4	dA	NIA	16/2	CIA	CIA					
E	9.0	UA	12/A	CIA	8/P	CIA	3	0	5	0	
EF	6.1	NA	14/A	WA	UIP	0/P					
F	20	OIA	201/0	281D	A/88	0/1	0		5	0	9/10
FG	90	OIA	36/P	35/P	48/D	0/10			EW.		
G	60	UA	35 IP	40/A	47/P	GIA	6	1	5	5	
GH	8.5	OLA	31/P	97/P	25/A	OIA	P P P P				
н	21	OlA	5/A	3617	30/A	au/p	8	6		6	
HI	6.8	OLA	36/ P	32/P	36/P	25/4			300	To the	LE SVI
1	54	NA	341A	351A	HOLA	OIA	13	11	10	1	10.00
IJ	50	OIA	SU/A	2214	76/A	MA					通用长.
J	3.0	OlA	18/A	20/A	DOLA	OIA	8	8	15	4	
JK	45	OIA	11/A	20/A	15 4	STA					
K	WI	MA	SUNA	PlaA	35/A	C/A	15	13		16	11113-

Ventura River Algae TMDL Field D

Sheet (Reaches 1—4) - Page 1 of 2

Discharge Measurement

1st Measurement = left bank (looking downstream)

Event ID (Month Year):		151	Measuremen	(looking downstream)	3111)				
Site ID: TMDL- RY	Vel	ocity Area M	Method (pref	erred)	Buoy (Use only if vel	ant Object I		ossible)	
Date/Time: 07/14/2021 07:50		Distance		Velocity		Float 1	Float 2	Float 3	
Crew Members: SP, SH, MC, MD	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)				
Latitude/Longitude: 34379 796 - 119.308528		\		1	Float Time (see)				
Flow (circle one): Flowing / Ponded / Dry	1			-	Float R	each Cross S	ection (ft)		
Wind Strength:	2						Middle		
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	3					Upper Section	Section	Lower Section	
Wind Direction: Blowing (circle one) From / To		-	1	0		Section	50000011	55511511	
Photos (check): XUpstream XDownstream	4				Width		1		
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5	\			Depth 1				
discharge comments, etc.): How taken not		1	1	F	Depth 2		1		
above B. Shortend Man 5/ 10m	6				/		-		
elie to augrenty. I mostly	7		\ /	2	Depth 3				
roved in thick allendo			V	M	Depth 4				
	8		A		Depth 5			j	
January—December Monthly In Situ Measurements:	9		/ \		V				
pH: 7.12 pH units EC:µS/cm	10			1111	May—September:				
DO: 6.55 mg/L SC: 1105 μS/cm	10	1			Reach Length (150	m if wetted	width ≤ 1	0 m; 250 m	
DO:% Salinity: 0.55 ppt	11		1 1 3		if wetted width > 1	0 m):	150		
Water Temp: 18.72°C	12	1						1	
Flow (from discharge measurement):cfs	12					ion Device		Quantity	
riow (nonit discharge measure <u>ment)</u>	13				(sum # trans	ects per Dev	rice)		
	14		1	=	Rubber Delimiter (A	Area=12.6cm	n²)	9	
Samples Collected (check box)	15	1	1		PVC Delimiter (Area	a=12.6cm ²)			
January—December Monthly Water:	16	1			Syringe Scrubber (A	\rea=5.3cm ²)	2	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16	/		1			`		
Nitrogen (unfiltered):	17 /				Other (Area=)		
Dissolved Phosphorus and Nitrogen (field filtered): 🧸	18/				Number of Transec	ts Sampled ((0-11)		
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)		420	
Chlorophyll a (filters—algae):					Chlorophyll a Volur	me			
Cinc. op., yn a (intero aigas).	/ 20			1	(use GF/F filter, 25		d volume)	25	
					(use GF/F litter, 25	inc preferre	a volume)		

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 2 of 2

Ventura River Algae TMDL Transect Measurements (for percent cover, May-September)

	te titlet tilbee tittee tietiet			1	
2	1211				
Site:	12/2	Date: 2/14/24	Crew:		
J. C.		Butte.			

		Macroalgae	Presence/Abs	sence (P/A) ar	nd Water Depth	ı (cm)		Densiometer (0-17) Count covered dots			
Transect	Wetted Width (m)	Left Bank	Left Center	Center	Right Center	Right Bank	Center Left	Center Upstream	Center Right	Center Downstream	Upstream/ Downstream
Α	6	5/P	50/ P	3/P	19/P	O/P	5	12	0	Ø	1/2
AB	5.2	5/A	45/P	360	18/P	OP	19.11			45 77 17	
В	45	0/A	40/A	23/p	15/A	0/ P	17	7	0		
ВС	6	OP	UP	OlA	9/A	0/P	15/12/19			7	
С	6.2	OIP	19/P	15/ P	WP	OP	3	0	2	0	性的性
CD	8.7	OP	3/P	8/P	12/P	O/P					
D	10.7	0/P	13/D	11/P	24/12	0/8	3	4	0	0	
DE	9.5	OP	20 /P	10/P	9/P	0/8				(X) _ (X)	
E	10.1	0/A	13/P	5/P	17/P	QA	9	7	0		
EF	7.5	0/4	18/P	25/P	G/P	OP					
F	9.0	OP	II/P	71/P	2617	OP	0	0	4	8	3/4
FG	9.0	OP	23/P	35/9	P	0/4	SAL T		V- TOW		
G	8.0	0/A	26/P	UO/P	26/P	0/8	The same of the sa	3	1	0	B WWA
GH	7.0	0/P	25/P	W3/P	51/P	O/A					A EARL
Н	60	OP	15/P	30/P	WIA	OIA	0	3	6	7	
ні	6.0	010	9/P	19/P	23/2	0/4	1/11/5		1 8 12		SIN TEN
	65	CIA	31/10	25/P	25/P.	Ø/A	17	1>	13	7	MA-LIE
IJ	20	0/p	47/P	34/P	34/1	2/4					
J	45	018	35 IP	59/P	33/P	O/A	14	/0	5		E TOSTE
JK	45	OA	45/A	10/P	10/1	O/A					B B B B B
К	NIA	NIA	MA	1/A	0/4	CIA	17	17	17	12	615

Ventura River Algae TMDL Fielc ata Sheet (Estuary) - Page 1 of 2

Ventura River Algae TMDL—Estuary Details

Site ID: TMDL-Est			
Event ID (Month Year):	Date: >(15/2	12.15	
Crew Members: SH, KG SS			
Weather (circle one): Clear / Partly Cloudy / Overcast / Rainy / Foggy	Ocean Inlet (circle one): Open	/ Restricted / Closed	
Direction of Tide: Ebb / Flood / Slack / N/A	Time of Low Tide:	Time of High Tide: 1454	. / 1
Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze / W	indy / Strong Wind	Wind Direction: Blowing From To	NE
Notes (e.g. homeless, wildlife, dogs, swimming/recreation):			

TRANSECT 1

	In Situ Measurements (Measure at Float Monthly (Jan—Dec): pH: 8.42 pH units EC: DO: 6.64 mg/L SC: 6.64	Water Samples Collected (check box) [Collect at Floating Macroalgae Quadrat 1, Transect 1] Monthly Water (Jan—Dec): Nitrogen, total and dissolved:													
204 HO	Photos: Oceanward Landward Start Latitude: 34, 275706 End Latitude: 34, 27, 4371 PVC Latitude:		Start Tir	gitude: `		307	-07	E	Dry Se	e + Nitrite eason Algophyll a (p	tal and disset as Nitrogeras Nitrogeras Nitrogeras (May—shytoplank red per san	en: Sep): cton):	* * * * * * * * * *		
180			MACROALGAE—LAND BASED									FI	LOATING IV	IACROALG	iAE
320	Quadrat	1	2	3	4	5	6	7	8	9	10	1	2	3	4
+06	Distance (m)	5.0	1.3	52	10.0	10.6	14.6	18-0	20.4	23.8	25.4	17.7	5:0	25.4	25.4
13	Water Depth (must be ≤ 0.3 m)	0.0	0.0	00	00	00	0.0	0.0	0.0	0.0	0.2				
- 11		Frsh	Frsh	Fish	Fresh	Frsh)	Frsb	Frsh	Frsh	>Ersh >	Ersh	Frsh	Frsh	\ Frsh	1 Frsh

				MAC	MACROALGAE—LAND BASED							FLOATING MACROALGAE			
4	Quadrat	1	2	3	4	5	6	7	8	9	10	1	2	3	4
	Distance (m)	0.2	1.3	52	10.01	10.6	14.6	18-0	20.4	23.8	25.4	17.7	MZ	25.4	25.4
-	Water Depth (must be ≤ 0.3 m)	0.0	0.0	00	00	00	0.0	0.0	0.0	0.0	00				7
	Condition [Frsh=Fresh, Int=Intermediate, Des=Dessicated, Dd=Dead]	Frsh Int Des Dd	Frsh Int Des Dd	Int Des Dd	Int Des Dd	Frsh Int Des Dd	Frsb Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Ersh In Des Dd	Ersh Int Des Dd	Frsh Int Des Dd.	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd
Ī	No. Crosshairs with Macroalgae Present	26	4	26	24	33	17	22	18	0	05	49	49	8	01
	No. Crosshairs with Macroalgae Absent	23	45	23	25	16	32	27	Us	LIA	MU	0	8	44	HA
	Crosshair Total (must equal 49)	Ud	49	49	49	75	49	019	49	49	4	49	49	019	49

Ventura River Algae TMDL Field Data Sheet (Estuary) - Page 2 of 2

Venture Diver Algee TARDI - Feture - Te-			nte Dai				Crew		,		-			
Ventura River Algae TMDL— Estuary Tra	insect ivie	asureme	iits Dai	.e			_ crew							
TRANSECT 2 Photos: Ceanward Candy	vard					Start Time:	17.	47)		End	d Time:	1214	4	
Start Latitude: 34.27437	19				-	Start Longit	40000	1/9 7	307	405			1	
End Latitude: 34, 27 461	3					End Longitu		-119.	3073	89				· · · · ·
PVC Latitude:						PVC Longiti	ude:	77 1						
•				MAC	ROALG	AE—LAND B	ASED				FI	OATING N	ACROALG	AE
Quadrat	1	2	3	4	5	6	7	8	9	10	1	2	3	4
Distance (m)	0.2	1.3	5.7	10.0	10.	0.416	180	20.4	23.8	25.4	62	0.2	254	254
Water Depth (must be ≤ 0.3 m)	0.0	0.0	00	00	00	0.0	A.0	0.0	(11)	0.0				
Condition [Frsh=Fresh, Int=Intermediate, Des=Dessicated, Dd=Dead]	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Prish Int Des Dd	Frsh Int Des Dd	Frsh Int Des	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Po	Ersh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd
No. Crosshairs with Macroalgae Present						5	6	a			10	0	0	8
No. Crosshairs with Macroalgae Absent	115 16 1					44	43	44	48	49	LIG	49	La	4
Crosshair Total (must equal 49)	49	49	49	49	40	1 49	49	49	41	धन	49	49	LIA	49
TRANSECT 3														
Photos: Coceanward Alando	ward					Start Time: 1248								
Start Latitude: 34.77163						Start Longi	tude: 🕆	1193	9738	9				
End Latitude: 34.2747	ind Latitude: 34.274785 End Longitude: -119. 347450													
PVC Latitude:						PVC Longit	ude:							
				MAC	ROALG	AE—LAND B	ASED				F	LOATING N	MACROALG	AE
Quadrat	1	2	3	4	5	6	7	8	9	10	1	2	3	4
Distance (m)	02	1.3	5.2	10,0	(0,	614.6	18.0	204	23.8	25.4	0.2	210	52.0	254

Frsh

Int

Des

Dd

Frsh

Int

Des

Frsh

Int

Des

Dd

9

Frsh

Dd

Frsh

Des

Dd

Frsh

Des

Dd

Frsh

Int

Des

Frsh

Int

Des

Dd

4 41

Frsh

Int

Des

Dd

Frsh

my

Des

Dd

Frsh

Des Dd

45

Water Depth (must be ≤ 0.3 m)

Condition

[Frsh=Fresh, Int=Intermediate,

Des=Dessicated, Dd=Dead]

No. Crosshairs with Macroalgae Present

No. Crosshairs with Macroalgae Absent

Crosshair Total (must equal 49)

() () Frsh Int

Des

Dd

49

Frsh

Des

Dd

Ventura River Algae TMDL Event Details

EVENT DETAILS Event ID (Month Year): Avant Zand	Date: 8/11/2011
	Date:
Crew Members:	Oalt au
Weather (circle): Clear / Partly Cloudy / Overcast / Showers / Rain / G	
Event Type (check): □ Vory (<0.1" rain per day for the preceding □ Wet (days with ≥0.1" rain and the three d	
	ays following)
Notes :	
OBSERVATION SITES (RIVER FLOW)	
Ventura River at Highway 150 (Baldwin Road)	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
Ventura River at Santa Ana Blvd Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	Thotas raken. Opstream / Downstream
Ventura River at Casitas Vista Road	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
Additional Observation Site: cfs) Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes: cis)	Photos Taken. Opsiteam / Downstream
Total	~
UNSAMPLED TMDL SITES	
Site ID: TMDL-CL Time: 0706	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):	
Notes:	
Site ID: Time:	Di eta Talan Matana / Davinstana
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Opstream / Downstream
Reason not sampled (if flowing):	
Notes:	
Site ID: Time:	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):	
Notes:	
Site ID: Time:	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):	
Notes:	

Assessment of hydrologic states

Site:	TMDL-C	Lat: 34341967 Long: -119, 286446 Date: 8/11/201
Obse	rver(s):S	P MC
	habitats: Estima (2007). Total mu:	te the percent cover of each habitat type across the entire reach, to within 5%. Definitions follow st equal 100%.
	Cas	scades Rapids Riffles Runs Glides Pools Dry
% of	reach	100
Seled	t the hydrologic	state that most closely matches the dominant state of the reach:
State	(check one)	Description, indicators
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets Surface water is more or less continuous throughout reach. Riffles are scarce.
	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
Þ	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Hob	o Meter Depth (i	m):
		ment conditions (at transects A, F, and K, if possible).
Note		
)		5

Assessment of hydrologic states

Site:_	THIZL-S	Lat: 34380674 Long: -119.307534 Date: 8111/2021
Obse	rver(s):SP	· MC
	habitats: Estima (2007). Total mu:	te the percent cover of each habitat type <i>across the entire reach</i> , to within 5%. Definitions follow st equal 100%.
	Cas	scades Rapids Riffles Runs Glides Pools Dry
% of	reach	. 100
Selec	t the hydrologic	state that most closely matches the dominant state of the reach:
State	(check one)	Description, indicators
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets Surface water is more or less continuous throughout reach. Riffles are scarce.
	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
X	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Hobe	o Meter Depth (ı	m):
Take	a photo to docu	ment conditions (at transects A, F, and K, if possible).
Note	es:	

Ventura River Algae TMDL Field Dat heet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

Event ID (Month Year): hogest 2001		TSU I	vieasuremen	it = ieit baiik (looking downstream)			/
Site ID:	Velocity Area Method (preferred)				Buoy. (Use only if velo	ant Object		(ssible)
Date/Time: 8/11/201 0730		Distance		Valdaitu	(030 0111) 11 12	Float 1	Float 2	Float 3
Crew Members:	V	from Left	Depth (ft)	Velocity (ft/sec)	Distančę (ft)	7104.1	/	11000
Latitude/Longitude: 34379789 -19.308497	1	Bank (ft)			Float Time (sec)		/	
Flow (circle one): Flowing / Ponded / Dry		1		/	Float Re	each Cross	Section (ft)	
Wind Strength: Calm/ Light Breeze / Moderate Breeze / Strong Breeze / Windy	2	1				Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3		1			Section	Section	Section
Photos (check): Downstream	4				Width	1		
Notes (e.g. homeless, wildlife, horses, swimming/recreation,		1	- 1		Depth 1		1	
discharge comments, etc.) :	5	1	1					
	6	5	/		Depth/2		1	
	7	1	1		Depth 3		1	
		N	\ /		Depth 4			
	8	1	//	(1)	Depth 5	- 11		
January—December Monthly In Situ Measurements:	9	1)	X		y Deptil 3			
pH: <u>Z13</u> pH units EC: μS/cm	10	_	/ \		May—September:			/
DO: 5.72 mg/L SC: 1027 μS/cm		2			Reach Length (150			0 m; 250 m
DO:% Salinity: <u>0.51</u> ppt	11	1			if wetted width > 10) m):	/	
Water Temp: 18,4 °C	12	2/			Collecti	on Device	/	Quantity
Flow (from discharge measurement): cfs	13	9			(sum # transe		/	
	14	1			Rubber Delimiter	rea=12.6¢	m²)	
Samples Collected (check box)	15	1	1		PVC Delimiter (Area	=12.0cm ²)		
January—December Monthly Water:	1.5	/	+ +		Syringe Scrubber (A	2-5 cm	,21	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16				/	yea-3.3cm	' '	
Nitrogen (unfiltered):	17		1		Other (Area=		1)	
Dissolved Phosphorus and Nitrogen (field filtered): 🙀	18/				Number of Transec	ts Sampled	(0-11)	
	/				Composite Volume	(ml)	1	
May—September Dry Season Monthly Algae:	/19							
Chlorophyll a (filters—algae):	/ 20				Chlorophyll a Volur Juse GF/F filter, 25		ed volume)	1

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

	Discharge Mea					
Event ID (Month Year): Avgust 2021	1st Measurement = left bank	(looking downstream)				
Site ID:	Velocity Area Method (preferred)	Buoyant Object Method (Use only if velocity area method not possible)				
Date/Time: 81000000000000000000000000000000000000	Distance Velocity	Float 1 Float 2 Float 3				
of the mental state of the stat	No. from Left Depth (ft)	Distance (ft)				
Latitude/Longitude: 34, 345464 - 18,29365	Bank (π)	Float Time (sec)				
Flow (circle one): Flowing / Ponded / Dry	1 /					
Wind Strength:	2	Float Reach Cross Section (ft)				
Calm/ Light Breeze / Moderate Breeze / Strong Breeze / Windy	3	Upper Middle Lower				
Wind Direction: Blowing (circle one) From / To		Section Section Section				
Photos (check):	4	Width				
Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.) :	5	Depth/1				
discharge comments, etc.)	6	Depth 2				
	7	Depth 3				
		Depth 4				
	8	Depth 5				
January—December Monthly In Situ Measurements:	9 5 /	/ Deptil 3				
pH: 7.3Z pH units EC:us/cm	10	May-September: Algae Collection for Chlorophyll a				
DO: 7. % mg/L SC: 1160 μS/cm	12/	Reach Length (150 m if wetted width ≤ 10 m; 250 m				
DO: Salinity: _0、58_ ppt	11	if wetted width > 10 m):				
Water Temp:°C	12	, Collection Device Quantity				
Flow (from discharge measurement): cfs	13	(sum # transects per Device)				
	14	Rubber Delimiter (Area=12.6cm²)				
Samples Collected (check box)	15	PVC Delimiter (Area=12.6cm²)				
January—December Monthly Water:		Syringe Scrubber (Area=5.3cm²)				
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16 /	X				
Nitrogen (unfiltered):	17	Other (Area=)				
Dissolved Phosphorus and Nitrogen (field filtered):	18/	Number of Transects Sampled (0-11)				
May—September Dry Season Monthly Algae:		Composite Volume (mL)				
Chlorophyll a (filters—algae):	19					
one opining (inters digac).	/ 20	Chlorophyll a Volume				
		(use GF/F filter, 25 mL preferred volume)				

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

1st Measurement = left bank (looking downstream)

Event ID (Month Year): Available 1894		250	vicasaremei	TE TETE BUTTK	(looking downstream)			
Site ID: THDL-RI 100	\ Vel	ocity Area M	lethod (pref	erred)	Buọy (Use only if vel	rant Object		ssible)
Date/Time:		Distance		Velocity	1000000	Float 1	Float 2	Float 3
	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)		/	
Latitude/Longitude: 34379797 -119, 3085 17	1	\			Float Time (sec)	1		
Flow (circle one): Flowing / Ponded / Dry Wind Strength:		1			Float R	each Cross	Section (ft)	
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From / To	3		/			Upper Section	Middle Section	Lower Section
Photos (check): Upstream Downstream	4	2			Width /			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5	191	1		Depth 1			
discharge comments, etc.) :	6	12	1		Depth 2			
		1001	/		Depth 3			
	7	2	X	-	Depth 4			
	8	1	1		Depth 5			
January—December Monthly In Situ Measurements:	9	2						1
pH: 8.00 pH units EG: µS/cm	10	0/			May—September:			
DO: 7.3 mg/L SC: 1473 μS/cm DO: % Salinity: 0.7 μppt	11	1			Reach Length (150 if wetted width > 10			u m; 250 m
Water Temp: 20.8 °C	12							
Flow (from discharge measurement): cfs	_	-			(sum # trans	ion Device	wice)	Quantity
	13	/	1		Rubber Delimiter (-/	
*	14	/				1	/	
Samples Collected (check box)	15				PVC Delimiter (Area	a=12:6cm		
January—December Monthly Water:	16 /				Syringe Scrubber (A	rea=5.3cm	2)	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered):	17/				Other (Area=		1	
Dissolved Phosphorus and Nitrogen (field filtered):	1/8				Number of Transec	ts Sampled	(0-11)	1
May—September Dry Season Monthly Algae:	/19				Composite Volume	(mL)		
Chlorophyll a (filters—algae):	20				Chlorophyll a Volur (use GF/F filter, 25		ed volume)	

Ventura River Algae TMDL Field Da Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement	
-----------------------	--

Event ID (Month Year): Agost 201		1st		nt = left bank	(looking downstream)				
Site ID: TMDL- RZ	Ve	locity Area N	1ethod (pref	ferred)	Buoyant Object Method (Use only if velocity area method not possible)				
Date/Time: SN 1704 0900 Crew Members: SP MC		Distance	(6)	Velocity		Float 1	·	Float 3	
Crew Membersi	No.	from Left Rank (ft)	Depth (ft)	(ft/sec)	Distance (ft)		1		
Latitude/Longitude: 34.339416 -111.297196	1	Parix (IL)			Float Time (set)		1		
Flow (circle one): Flowing / Ponded / Dry			-/		Float Re	each Cross	Section (ft		
Wind Strength: Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	2		/			Upper	Middle	Lower	
Wind Direction: Blowing (circle one) From / To	3		/			Section	Section	Section	
Photos (check): 人Upstream 人Downstream	4	/	/	1	Width		\		
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5	K	1		Depth 1		1		
discharge comments, etc.):	6		V		Depth 2		1		
	7		A		Depth 3				
			/		Septh 4				
	8	7			Depth 5			1	
January—December Monthly In Situ Measurements:	9								
pH:μS/cm	10				May—September:				
DO: 7 44 mg/L SC; 1218 μS/cm	11	A I		1	Reach Length (150 i			0 m; 250 m	
DO:% Salinity:ppt Water Temp: Z°C		01		1	if wetted width > 10			_/	
Flow (from discharge measurement): cfs	12	1		1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	on Device		Quantity	
	13	-/-			(sum # transe			/	
	14	/			Rubber Delimiter (À	rea=12.6cr	n²)		
Samples Collected (check box)	15	1			PVC Delimiter (Area	=12.6cm ²)	/		
January—December Monthly Water:	16	/			Syringe Scrubber (A	rea=5.3cm	34		
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as		/			Other (Area=	$\overline{}$	1		
Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered):	17	1		- 1		/	1		
Dissolved Filosphorus and Microgen (Heid Hitered): 🗡	18/				Number of Transect	s Sampled	(0-11)		
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)	-		
Chlorophyll a (filters—algae):	/20			,	Chlorophyll a Volum	ie -		1	
					(use GF/F filter, 25 r	nL preferre	d volume)	1	

Ventura River Algae TMDL Field Data Sheet (Estuary) - Page 1 of 1

Ventura River Algae TMDL—Estuary Details

Event ID (Month Year):	Site ID: TMDL-Est	
Crew Members: SP MC Weather (circle one): Clear / Partly Cloudy / Overcast / Rainy / Foggy Ocean Inlet (circle one): Open / Restricted / Closed Direction of Tide: Ebb / Flood / Slack / N/A Time of Low Tide: Ebb / Time of High Tide: Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze / Windy / Strong Wind Wind Direction: Blowing From / To Notes (e.g. homeless, wildlife, dogs, swimming/recreation): Page in water for the born has been again in months.	Event ID (Month Year): Angusto 701 Date/Tim	ne: 8/11/2021 10:30
Direction of Tide: Ebb/ Flood / Slack / N/A Time of Low Tide: 1805 Wind Strength: Calm / Slight Breeze / Moderate Breeze Strong Breeze / Windy / Strong Wind Notes (e.g. homeless, wildlife, dogs, swimming/recreation): Time of Low Tide: 1805 Wind Direction: Blowing From To Wind Direction: Blowing From To Notes (e.g. homeless, wildlife, dogs, swimming/recreation): Typy in water from the bean has been again in months	Crew Members: SP MC	
Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze / Windy / Strong Wind Notes (e.g. homeless, wildlife, dogs, swimming/recreation):		
Notes (e.g. homeless, wildlife, dogs, swimming/recreation):	Direction of Tide: Ebb./ Flood / Slack / N/A Time of Low Tide:	1805 Time of High Tide:
Tags in water, first time beam has been apan in months.	Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze / Windy / Strong Wind	Wind Direction: Blowing From To
	Notes (e.g. homeless, wildlife, dogs, swimming/recreation):	
Monthly (Jan—Dec): pH: b 2 pH units EC: μS/cm Water Temp: 2) 3 °C DO: 50 mg/L Sci2464 μS/cm Salinity: 18 5 ppt Collect at Floating Macroalgae Quadrat 1, Transect 1] Monthly Water (Jan—Dec): Nitrogen, total and dissolved: Phosphorus, total and dissolved: Nitrate + Nitrite as Nitrogen:	pH: 8,25 pH units	Monthly Water (Jan—Dec): Nitrogen, total and dissolved: Phosphorus, total and dissolved:
Photos: XOceanward Xandward	Photos: XOceanward Xandward	· _ · _ ·
Sample Latitude: 34.274381	Sample Latitude: 34274381	
Sample Longitude - 1/9. 3574 94	Sample Longitude - 1/G VOLA GLA	+ .

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

Event ID (Month Year):	1st Measurement = left bank (looking downstream)							
Site ID:	Velocity Area Method (preferred)			Buoyant Object Method (Use only if velocity area method not possible)				
Date/Time:		Distance		Velocity		Float 1	Float 2	Float 3
Crew Members:	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)	, lout 2	Hourz	Tioat 3
Latitude/Longitude:	1				Float Time (sec)			
Flow (circle one): Flowing / Ponded / Dry			-			aach Crocs	Section (ft)	
Wind Strength:	2				Float N			
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From / To	3				(a. 1	Upper Section	Middle Section	Lower Section
Photos (check): □ Upstream □ Downstream	4				Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.):	5				Depth 1			
	6				Depth 2			
	7				Depth 3			
					Depth 4			
	8				Depth 5			
January—December Monthly In Situ Measurements:	9							
pH:pH units EC: μS/cm	10				May-September:			
DO: mg/L SC: μS/cm	11				Reach Length (150) m; 250 m
DO: % Salinity: ppt Water Temp: °C			-		if wetted width > 10	m):		
Flow (from discharge measurement): cfs	12				Collection	on Device		Quantity
tion discharge measurement)tis		4			(sum # transects per Device)			
	14				Rubber Delimiter (A	rea=12.6cn	n²)	
Samples Collected (check box)	15			-	PVC Delimiter (Area	=12.6cm²)		
January—December Monthly Water:	16		7		Syringe Scrubber (Ar	ea=5.3cm ²	1	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16					- J.JCIII		
Nitrogen (unfiltered):	17				Other (Area=)	
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transects	Sampled ((0-11)	
May—September Dry Season Monthly Algae:	19				Composite Volume (mL)		
Chlorophyll a (filters—algae):	20				Chlorophyll a Volum			
•					(use GF/F filter, 25 m	L preferre	d volume)	

Rincon Ventua River TMDL Field Data Sheet

Sample Date:	04/08/2021
Sample Crew:	SP, SH, MG, 5C

Sta	tion ID:	TMPL R3	TADL					
San	nple Time:	0900	1115					-
Col	lection Method: (Circle method)	Standard MCM						
Device	Rubber delimiter (area=12.6cm2)	11	\ /			0		
	PVC Delimiter (area=12.6cm2)	0	V				()	
Collection	Syringe Scrubber (area=5.3cm2)	8						
Nui	mber of transects sampled (0-11)	11	76<					
Cor	mposite Volume (mL)	460	1000					
Chl	orophyll a volume (25 mL preferred)	25	1000					

	<u> </u>	

Rincon Venta River TMDL Field Data Sheet

Sample Date: 09/09/ cod

Sample Crew: SPSH, MCSC

Station ID: Sample Time:		TMPL	TYPL		4			
		0940	1015					
Collection Method: (Circle method)		Standard MCM						
tion Device	Rubber delimiter (area=12.6cm2)	8	-					
	PVC Delimiter (area=12.6cm2)	3	L					
Collection	Syringe Scrubber (area=5.3cm2)	0	8					
Nur	mber of transects sampled (0-11)	11						
Con	nposite Volume (mL)	510	460					
Chlo	orophyll a volume (25 mL preferred)	25	25					

omments:	+		
	1		

Ventura River Algae TMDL Event Details

EVENT DETAILS	nakeland
Event ID (Month Year):	Date:
Crew Members: SPSH, MCSC	
Weather (circle): Clear / Partly Cloudy / Overcast / Sh	
Event Type (check): Dry (<0.1" rain per day for	
	and the three days following)
Notes :	
OBSERVATION SITES (RIVER FLOW)	
Ventura River at Highway 150 (Baldwin Road)	
Flow Status: Dry / Ponded / Flowing (Estimated Flow	r: cfs) Photos Taken: Upstream / Downstream
Notes:	
Ventura River at Santa Ana Blvd	
Flow Status: Dry / Ponded / Flowing (Estimated Flow	r: cfs) Photos Taken: Upstream / Downstream
Notes:	
Ventura River at Casitas Vista Road Flow Status: Dry / Ponded / Flowing (Estimated Flow	cfs) Photos Taken: Upstream / Downstream
Notes:	
Additional Observation Site:	
Flow Status: Dry / Ponded / Flowing (Estimated Flow	r: cfs) Photos Taken: Upstream / Downstream
Notes:	
UNSAMPLED TMDL SITES	
Site ID: THDL-CL Time: 674	Photos Taken: Upstream / Downstream
Flow Status: Dry Ponded / Flowing (Estimated Flow:	
Reason not sampled (if flowing):	
Notes:	
Site ID: TMDL-RH Time:	Photos Taken: Upstream / Downstream
Flow Status: Dry Ponded / Flowing (Estimated Flow:	
Reason not sampled (if flowing):	
Notes:	
Site ID: TMDL - SA Time: 8:	
Flow Status Dry Ponded / Flowing (Estimated Flow:	
Reason not sampled (if flowing):	
Notes:	
Site ID: Time:	Photos Taken: Upstream / Downstream
Flow Status : Dry / Ponded / Flowing (Estimated Flow:	
Reason not sampled (if flowing):	
Notes:	

	Cas	cades Rapids Riffles Runs Glides Pools Dry
of	reach	100
elec	t the hydrologic	state that most closely matches the dominant state of the reach:
tate	(check one)	Description, indicators
]	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of stream particles may occur.
]	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pornus, glides). Gravels will generally be stable on the streambed.
1	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small riv Surface water is more or less continuous throughout reach. Riffles are scarce.
]	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration concrete channels.
]	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet end to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This may not exist in concrete or bedrock channels
	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). So moisture in the streambed is not discernibly greater than in nearby soils above the banks.

Assessment of hydrologic states Lat: 34.3481 Long: 119.38X5D Date: 09/08/2014 Site: Flow habitats: Estimate the percent cover of each habitat type across the entire reach, to within 5%. Definitions follow Ode (2007). Total must equal 100%. Glides **Pools** Dry Cascades Rapids Riffles Runs % of reach Select the hydrologic state that most closely matches the dominant state of the reach: Description, indicators State (check one) Water may be above banks and turbid or carrying suspended particles. Movement of streambed **Hyperrheic** (flooding) particles may occur. Water always below banks (if banks are evident). Discharge is high enough to allow access to Eurheic most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, (baseflow) runs, glides). Gravels will generally be stable on the streambed. Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Oligorheic Surface water is more or less continuous throughout reach. Riffles are scarce. (limited flow) Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be Arheic disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in (disconnected concrete channels. pools) Most of the stream bed is devoid of surface water, although substrate may remain wet enough Hyporehic × to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state (subsurface may not exist in concrete or bedrock channels water) The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to Edaphic support active hyporheic life (although dessication-resistent life stages may be present). Soil (dry) moisture in the streambed is not discernibly greater than in nearby soils above the banks. Hobo Meter Depth (m): _____ Take a photo to document conditions (at transects A, F, and K, if possible). Notes:

Assessment of hydrologic states

Site:_	ITMDU-	A- Lat: 34.38070 Long: -19.30 746 Date: 09/08/2010
Obsei	rver(s): SP	SHMG SC
	habitats: Estimat 2007). Total mus	te the percent cover of each habitat type across the entire reach, to within 5%. Definitions follow st equal 100%.
	Cas	cades Rapids Riffles Runs Glides Pools Dry
% of r	reach	100
Selec	t the hydrologic s	state that most closely matches the dominant state of the reach:
State	(check one)	Description, indicators
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.
	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
X	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
	8:34	
Hobo	Meter Depth (n	
Take	a photo to docur	ment conditions (at transects A, F, and K, if possible).
Notes	s:	
1		
ĺ		

Ventura River Algae TMDL Field Da heet (Reaches 1—4) - Page 1 of 2

Event ID (Month Year): September Torl		1st		scharge Meas u nt = left bank (urement looking downstream)			
Site ID: TMDL-R5	Vel	ocity Area M				ant Object		esible)
Date/Time: 09/08/1001 09:00 Crew Members: SP, SH, MC, SC	No.	Distance from Left	Depth (ft)	Velocity		Float 1	Float 2	Float 3
Latitude/Longitude: 34.3-1552 -117.29943	-	Bank (ft)		(ft/sec)	Distance (ft)	/		
Flow (circle one): Flowing / Ponded / Dry	1 \				Float Time (sec)			
Wind Strength:	2				Float Re	each Cross	Section (ft)	
Calm/Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From / To	3		/			Upper Section	Middle Section	Lower Section
Photos (check):	4				Width /	1		
Notes (e.g. homeless, wildlife, horses, swimming/recreation,			-		/	-		
discharge comments, etc.) :	5	1			Depth/1			
	6			- 0	Depth 2			
	7		1		Øepth 3			
		/			Depth 4		,	
	8				Depth 5			
January—December Monthly In Situ Measurements:	9	N	X		Вериго			
pH: <u>7.6</u> pH units -EC: μS/cm	10	Di			May-September:	Algae Colle	ction for C	nlorophyll a
DO: _\$1, 72 mg/L SC: 1253 uS/cm	10	0)			Reach Length (150	m if wetted	d width ≤ 1	0 m; 250 m
DO:	11	5 1			if wetted width > 10	m):	150	
Water Temp: 19.4 °C	12				Collecti	on Device		Quantity
Flow (from discharge measureme nt): cfs -	13	13			(sum # transe		vice)	Quantity
	14	9/			Rubber Delimiter (A	rea=12.6cr	m²)	27 miles
Samples Collected (check box)	15	j			PVC Delimiter (Area	=12.6cm ²)		0
January—December Monthly Water:	16				Syringe Scrubber (A	rea=5.3cm	2)	25-7
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered):	17				Other (Area=)	66
Dissolved Phosphorus and Nitrogen (field filtered): 🍎	18	/			Number of Transect	s Sampled	(0-11)	
May—September Dry Season Monthly Algae:	19/				Composite Volume	(mL)		460
Chlorophyll a (filters—algae):	/20				Chlorophyll <i>a</i> Volum (use GF/F filter, 25 r		-d.uat.ua-1	25

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 2 of 2

Ventura River Algae TMDL Transect Measurements (for percent cover, May—September)
Site: TMDL- 65 Date: 9/8/2 Crew: SH MC

		Macroalgae	Presence/Abs	ence (P/A) ar	nd Water Depth	ı (cm)	1	Densiometer (0-17) Count covered dots			Photo (✓ when Taken)
Transect	Wetted Width (m)	Left Bank	Left Center	Center	Right Center	Right Bank	Center Left	Center Upstream	Center Right	Center Downstream	Upstream/ Downstream
Α	440	O/A	5/P	13/A	13/A	0/A	1	10	13	8	117
АВ	5.00	0/A	15/4	15/P	16/P	O/A					A VANDAR
В	6.52	O/A:	22/A	23/P	18/A	OIP	17	5	9	15	5 4 / 18
ВС	6.00	CIA	25/P	17/A	18/A	0/4	50.3	94			港 西。第
С	7.45	OlA	19/A	181A	10/4	OIA.	11	10	16	13	
CD	6.40	OIA	13/P	19/4	25/A	0/4	TELES.	10-11			N.A. JAN
D	7.90	0/A	20/A	5/A	O/A	9/A	0	7	4	9	and Miles
DE	9.75	O/A	10/P	8/P	15/A	OIA	227	R 32			
E	11.38	O/A	13/A	17/A	12/A	OlA	12	10	4	6	13 11 15
EF	7.25	0/A	30/A	30/A	34/P	4/P					
F	6.73	O/A	39/1	LI/P	50/P	0/4	4	Ч	5	Ż	4,3
FG	7.50	O/A	21/P	32/4	45/A	0/4	Project Control		E SE	1 - 1 F	
G	7.32	0/4	10/A	77/A	32/A	10/A	6	4	6	8	
GH	6.85	OLA	2-5/A	28/A	36/A	O/A		· *		TO STATE	
Н	6.40	OLA	22/A	26/A	38/A	0/P	12	17	15	6	Carlotte.
н	4.60	0/P-	8/8	33/A	37/A	OIA	THE STEEL		ER.	120 30	
1	4.34	OLA	1/A	25/A	15/1	OlA	17	17	1>	13	11年報
IJ	1.50	O/A	1/A	13/A	U/A	ULA				275	
J	1.60	OlA	1/A	15/4	15/ A	OLA	17	17	17	1>	1
JK	1.29	2/A	3/A	0/A	9/A	CLA				SPA ST	
к	2.50	OA	12/A	8/P	1/P	OLA	13	14	16	16	5.6

Ventura River Algae TMDL Field Da' Sheet (Reaches 1—4) - Page 1 of 2

Discharge	Measurement
-----------	-------------

Event ID (Month Year): September Zorl		1st (Measuremen	nt = left bank	(looking downstream)			
Site ID:	Vel	ocity Area N	lethod (pref	erred)	Buoy Use only if vel	ant Object		ossible)
Crew Members: PSI MC 5C		Distance		Velocity		Float 1	Float 2	Float 3
	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)	11		
Latitude/Longitude: 31.33 9432 119,297620	1	Dank (10)		1	Float Time (sec)		1	
Flow (circle one): Flowing / Ponded / Dry Wind Strength:		1		/		each Cross	Section (ft)	
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	2					Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3					Section	Section	Section
Photos (check):	4		/		Width	1		
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5	1			Depth 1		1	
discharge comments, etc.): howeles encompage	6	1			Depth 2		1	
100		2	-		Depth 3			
	7	177	//		Depth 4			1
	8	11	X		Depth 5			
January—December Monthly In Situ Measurements:	9	5			Бериго			
pH: 7.97 pH units EC: µS/cm	10		1		May—September:	Algae Colle	ction for Cl	niorophyll <i>a</i>
DO: 7.85 mg/L SC: 1386: μS/cm	11	1	1		Reach Length (150) m; 250 m
DO:% Salinity: _0, _7 ppt		51	1		if wetted width > 10) m):		
Water Temp: Zl. T °C Flow (from discharge measurement): cfs	12	9/			Collecti	on Device		Quantity
How (Holli discharge measurement)	13				(sum # transe	ects per De	vice)	
	14				Rubber Delimiter (A	rea=12.6cr	n²)	
Samples Collected (check box)	15	1	1		PVC Delimiter (Area	=12.6cm ²)		
January—December Monthly Water:		/			Syringe Scrubber (A	rea=5 3cm ²	2)	
Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as	16		1				<u></u>	
Nitrogen (unfiltered):	17/		1		Other (Area=)	
Dissolved Phosphorus and Nitrogen (field filtered): 質	1/8				Number of Transect	ts Sampled	(0-11)	11
May—September Dry Season Monthly Algae:	19			1	Composite Volume	(mL)		1.1
Chlorophyll a (filters—algae):	20				Chlorophyll a Volun	ne		15
	1 ==			*5.	(use GF/F filter, 25 i		ed volume)	25

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 2 of 2

Ventura River Algae TMDL Transect Measurements (for percent cover, May—September)

		Macroalgae Presence/Absence (P/A) and Water Depth (cm)				ı (cm)			eter (0-17) overed dots		Photo (✓ when Taken)
Transect	Wetted Width (m)	Left Bank	Left Center	Center	Right Center	Right Bank	Center Left	Center Upstream	Center Right	Center Downstream	Upstream/ Downstream
Α	6.23	CIA	30/A	49/4	62/A	0/4	13	12	K1	16	1/2
AB	6.32	0/4	29/A	47/A	46/A	0/A					
В	4.45	0/4	5/A	30/4	33/P	0/A	14	14	15	16	
ВС	4,30	OLA	13/4	27/A	30/4	0/4					
С	8.48	NA	\wedge A	34/A	25/P	OLA	17	17	17)>	
CD	285	0/A	33/A	28/A	14/A	OIA				17.4	
D	4.45	DIA	24/A	37/A	25 A	0/A	7	3	10	8	
DE	4.75	0/A -	18/A	24/P	13/	0/A	W 28				
E	6.08	OIA	32/P	33/P	16/10	0/4	9	6	5	4	
EF	7.90	O/A	13/P	3211	45/A	0/1			MI Hara		
F	6,95	OIA	361A	KI7/A	4414	0/4	5	2	9	9	3/4.
FG	6.85	0/P	12/17	LUIA	57/4	OLA	931	Top OA			
G	5.47	13/A	37/A	UU/A	U8/A	OIA	15	13	14	13	
GH	7.77	10/4	39/A	52/A	55/A	OlA)				
Н	575	0/0	25/4	26/A	2110	0/4	17	17	17	17	
HI .	5.13	NA	$\backslash \backslash \Diamond / A$	34/0	19/P	0/P.					31 7 7 1 - 1
f	5.48	NA	.18/1	20/8	20/A	8/A	.12	16	17	17-	
n	4.07	NA	2018	11/19	2219	IDIA		4	-1,2		
J	MA	VA	NK.	· NA	16 /A	O/A	13	1>	17	17	W. Ob.
JK	VA	24	14	nA.	45/A	0/A					
К	4.12	NA	NA	47/18	43/A	0/A	17	17	17	17	516.

NA= too over grant deep

Ventura River Algae TMDL Field Da Sheet (Reaches 1—4) - Page 1 of 2

			harge Meas				
Event ID (Month Year): Sortanger ZON	1st	Measurement	t = left bank	(looking downstream)			
Site ID: TMBL- RI	Velocity Area N	Nethod (prefe	rred)		ant Object		
Date/Time: 09/09/2021 1015	Distance			(Ose only if velo			
Crew Members: SP 5H MG SC 34 37812 / -117 378534	No. from Left	Depth (ft)	Velocity (ft/sec)	Distance (ft)	Float 1	Float 2	Float 3
Latitude/Longitude:	Bank (ft)			() () () () () ()			
Flow (circle one): Flowing / Ponded / Dry	1			Float Time (sec)			
Wind Strength:	2			Float R	each Cross	Section (ft)	
Wind Direction: Blowing (circle one) From / To	3				Upper Section	Middle Section	Lower Section
Photos (check): Cupstream Soownstream	4	1		Width		1	
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	_ \	1		Depth 1	-		
discharge comments, etc.): No homeless	5	/				-	
to 31 m head Shottened by	6			Depth/2	4		
	7 1	1		Depth 3			
	8 5	1		Depth 4			
	2			Depth 5			The same
January—December Monthly In Situ Measurements:	9 2 /			Canada and a second		7	
pH: 9/7 pH units EC: µS/cm	10			May—September:		The state of the s	
DO: <u>δ΄ 🥻 mg</u> /L SC: <u>1606</u> μS/cm DO: Salinity: <u>Ο, δ/</u> ppt	11	1		Reach Length (150 if wetted width > 10			0 m; 250 m
Water Temp: 20.0 °C	7			II Wetted Widtii > 10	, III),		
Flow (from discharge measurement): cfs	12				on Device		Quantity
	13			(sum # transe	ects per De	vice)	
	14			Rubber Delimiter (A	rea=12.6cm	n²)	7
Samples Collected (check box)	15	1		PVC Delimiter (Area	=12.6cm ²)		4
January—December Monthly Water:	16	1		Syringe Scrubber (A	rea=5 3cm ²	2)	01
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16				Ted S.Sem		1
Nitrogen (unfiltered):	17 /			Other (Area=)	
Dissolved Phosphorus and Nitrogen (field filtered):	18/			Number of Transect	s Sampled	(0-11)	11
May—September Dry Season Monthly Algae:	1/9			Composite Volume	(mL)		460
Chlorophyll a (filters—algae):	/20			Chlorophyll <i>a</i> Volum (use GF/F filter, 25 r		d volume)	25

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 2 of 2

Ventura River Algae TMDL Transect Measurements (for percent cover, May—September)
Site: TMDL Date: 919121 Crew: SP SM MC, SC

		Macroalgae	Presence/Abs	ence (P/A) ar	nd Water Depth	ı (cm)			eter (0-17) vered dots		Photo (✓ when Taken)
Transect	Wetted Width (m)	Left Bank	Left Center	Center	Right Center	Right Bank	Center Left	Center Upstream	Center Right	Center Downstream	Upstream/ Downstream
Α	2.65	OIA	25/1	40/A	30/A	25/A	10	15	10	6	1/2
АВ	3.65	0/A	15/P	16/P	12/P	0/4					情心直图
В	3.00	0/4	30/A	35/A	39/18	14/A	0	8	17	14	
ВС	150	2/A	16/A	17/19	15/P	O/A	2015年初		100		
С	2.55	6/P	25/A	O/P	17/P	0/4	17	16	1>	1>	
CD	2.65	12/A	20/P	0/9	16/P	0/P		The same	i em	4-11	
D	1.70	OIA	Alog	21/p	20/A	9/2	15	17	1>	12	
DE	1.52	2/1	121P	72/P	2VA	1/P					
E	575	1/7	15/P	13/P	25/A	O/A	17	8	X	17	
EF	6.17	OIA	16/A	76/A	36A	OLA			100		
F	NA	OLA	3214	60/A	NA	NA	17	1 200	1>	7.	3/4
FG	675	OLA	37/A	41/4	67/NA	OA				W.7 - 115	
G	6.84	OLA	54/A	FOLNA	80/NA	OLA	17	17	13	1>	
GH	7.22	O/A	55/A	GINA	local NA	O/A			A STATE OF		
н	535	CIA	43/A	BANKS	97/NA	0/4	1 550	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1>	
н	4.40	OLA	60/NA	751N+	75/NA	OA			7/32		
ı	2 50	0/A	20/A	27/A	22/19	OP	13	17		13	
IJ	1.65	O/A	17/A	36/A	12/P	C/A	月17年1		5 110	TS TOTAL	Navy Pig
J	2.90	O(A	17/P	(7/A	10/P	0/4	13	17	13	17	
JK	2,70	O/A	8 /P	IOP	7/9	C)/A				1 - 1 - 1	
К	2.05	C/A	0/A	15/4	5/A	0/+	17	1	13	1	5/6

NA: 200 Overgrown / cleep

Ventura River Algae TMDL Field at a Sheet (Estuary) - Page 1 of 2

Ventura River Algae TMDL—Estuary Details

PVC Latitude:

9.14		
Date: <u>0 %</u>	8/200	1115
Ocean Inlet (circle one): Oper	/ Restricted Closed	
Time of Low Tide: 1706	_ Time of High Tide:	1107
Windy / Strong Wind	Wind Direction: Blo	owing From / To
Ash near collection	site	_
	Ocean Inlet (circle one): Oper Time of Low Tide: 1706 Windy / Strong Wind	Ocean Inlet (circle one): Open / Restricted Closed Time of Low Tide: 1706 Time of High Tide: Windy / Strong Wind Wind Direction: Blo

TRANSECT 1		
In Situ Measurements (Measure at Floating M Monthly (Jan—Dec): pH: 8.46 pH units DO: 12.83 mg/L SC: 13466 Salinity: 7.77	μS/cm Water Temp:23.3 _{°C}	Water Samples Collected (check box) [Collect at Floating Macroalgae Quadrat 1, Transect 1] Monthly Water (Jan—Dec): Nitrogen, total and dissolved: Phosphorus, total and dissolved:
Photos: DOceanward Landward	Start Time: 1140 End Time: 1144]
Start Latitude: 34, 2743	Start Longitude: -19 30756	Dry Season Algae (May—Sep):
End Latitude: 34 27414	End Longitude: -) 19, 30/3-2	Chlorophyll a (phytoplankton): Volume filtered per sample:

PVC Longitude:

				MAC	ROALGAE	—LAND B	ASED				FL	OATING N	ACROALG	AE
Quadrat	1	2	3	4	5	6	7	8	9	10	1	2	3	4
Distance (m)	1.6	4.2	6.1	8.3	90	96	13.5	160	26.3	240	1.6	1.6	29.0	29.0
Water Depth (must be ≤ 0.3 m)									1					
Condition [Frsh=Fresh, Int=Intermediate, Des=Dessicated, Dd=Dead]	Frsh/ Int Des Dd	- Ersh Int Des Dd	Int Des Dd	Frsh Int Des Dd	Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsb Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Oes Dd
No. Crosshairs with Macroalgae Present	0	0	2	3	4	8			5	5	6	0	85	8
No. Crosshairs with Macroalgae Absent	49	49	47	46	45	41	48	48	44	44	49	49	49	49
Crosshair Total (must equal 49)	49	49	49	49	49	49	49	49	49	49	40	49	49	49

Ventura River Algae TMDL Field Data Sheet (Estuary) - Page 2 of 2

Ventura River Algae TMDL— Estuary Transect Measurements Date: May Tou Crew: P. SH, MC, S.C.

TRANSECT 2

Photos: Coceanward Landv	vard				!	Start Time:		110	17	Enc	l Time:		115)	
Start Latitude 34, 27451					9	Start Longit	tude: -	19:30	734				,	
End Latitude: 34, 27474						End Longitu		119.30	0740	9				
PVC Latitude:					T	PVC Longite	ude:				-		_	_
				MAC	ROALGA	AE—LAND B	ASED				, FL	OATING N	/ACROALG	iAE
Quadrat	1	2	3	4	5	6	7	8	9	10	1	2	3	4
Distance (m)	1.6	42	61	83	40		135	16.4	26.7	240	1.6	1.6	29.6	29.0
Water Depth (must be ≤ 0.3 m)						مودخ								
Condition [Frsh=Fresh, Int=Intermediate, Des=Dessicated, Dd=Dead]	Alsh Des Dd	Frsh Int Des Dd	Frsh Int Des IDd	Ersh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Firsh Int Des Dd)	Frsh Int Des Dd	Eush Int Des Dd	Frsh Int Des Dd	Frsh lot Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd
No. Crosshairs with Macroalgae Present	Ø	1	0	2	2	- 1	0	28	14	3	Ps.	46	15	3
No. Crosshairs with Macroalgae Absent	49	48	49	47	47	47	49	21	35	46	4	3	49	49
Crosshair Total (must equal 49)	الم إسا	24.4	49	49	4	401	49	49	49	49	49	49	49	24

TRANSECT 3

Photos: proceanward Landy	vard			- W	9	tart Time:			1/5	> Er	nd Time:		115	5
Start Latitude: 34.27476					9	itart Longit	tude: —	119	50710					
End Latitude: 34, 2749	3				E	nd Longitu	ıde: 🐱	119. 3	3075	2				
PVC Latitude:					F	VC Longitu	ıde:			_				
				MAC	ROALGA	E—LAND B	ASED				FI	LOATING N	MACROALG	AE
Quadrat	1	2	3	4	5	6	7	8	9	10	1	2	3	4
Distance (m)	1.6	4.2	6.1	8,3	9.0	96	135	16.9	26.3	29.0	1.6	1.6	29.0	29.0
Water Depth (must be ≤ 0.3 m)		1												
Condition [Frsh=Fresh, Int=Intermediate, Des=Dessicated, Dd=Dead]	Ersb Int Des Dd	Frsh lot Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frsh Int Des Dd	Frst Int Des Dd	Int Des Dd	Frsh Int Des Dd	Frsh fit Des Dd	Frsh Des Dd	Frsh Int Des Dd
No. Crosshairs with Macroalgae Present	3	8	8	16	Ø		10	18	49	27	Ø	Ø	Ø	10
No. Crosshairs with Macroalgae Absent	46	4	١	33	49	48	30	31	0	22	49	49	49	49
Crosshair Total (must equal 49)	14 5	49	49	49	49	49	49	49	6169	49	to Jak	414	49	49

Site ID:					Field Crew:	<u> </u>	· · · · · · · · · · · · · · · · · · ·	Doempr	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	YSI Dissolved Oxygen (mg/L)	Measureme pH	Conductivity (µs)	Salinity (ppt)
9-23-4	1)18	ON: 74.345930 OW: 119.299870	20	US:	180	7.70	7.83	1238	0,62
Location Des	cription:	Sour 35	Last						
							<u> </u>		1-12-2
Comments:	1			\	·		1		
				1					

Site ID:		Retrieval	*		Field Crew:			dy	
						YSI	Measureme	nts	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinity (ppt)
9-23-21	1201	ON: 34.340325 OW: 112.297139	21	US: DS:	21.3	6.53	7.98	1305	0.45
Location De	scription:	Some po	LAST						
						+	17		
Comments:				· · · · · · · · · · · · · · · · · · ·					
and the same		anne a contract of the contrac				*			
71						17.44			Grand Control
									4

eployment	y Mid / I	Retrieval			Flow (circle or				14
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	Measurem pH	Conductivity (µs)	Salini (ppt
1		⁰ N:	- 20	ÚS:/_	1/2	6.95	8.11	1612	0.87
ocation Des	1245	°W:	30	DS:	18.6	0.113	0.11	.012	0.0
ocation Des		SAME AS	-L	DS:	18.6	0.113	0.11		0.0
			-L	DS:	18.6	0.113			0.0

Site ID:					rield Crew;	10,000		Jm Mn	ar .			
Deployment	/ Mid / F	Retrieval			Flow (circle o	ne): Flowing,	Ponded/ [Dry				
					YSI Measurements							
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (µs)	Salinity (ppt)			
9.23.21	1315	ON: 520m2 A5 LAST	1	US:	21.6	3.11	7.88	6311a)	3,45			
Location De	scription:	MIGH Mrs	LZUIL									
Comments:	r				** **				i			
				·			***					

10 4 4 10 9 19 18 7 10 7 6 0 1238 6. Location Description: Light Rom Moth brack		t / Mid / S	<u> </u>			Flow (circle of		Measuremo		-
Location Description: Light Rom night bifok?	Date	Time	Coordinates	Depth (cm)	Photos		Oxygen	рН		Salinity (ppt)
Location Description: Light Rain Moht before Comments:	104.4	1019		_ 19	1	18.7	8.10	7.60	1238	6.62
			1 17 10	127	6.4.					
Comments:	Location De	scription:	LIGHT RAIN	NIGNIK	PAPEL					
Comments:				-				V-00-07-00-09-		
Comments:										
	Comments:									
	and the second second									

		- for Zene			Field Crew:		Service Archae		_	
Deployment / Mid / Retrieval					Flow (circle one): Flowing/ Ponded/ Dry					
				YSI Measurements						
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinity (ppt)	
10-8-21	1055	^o N:	19	US: DS:	20.1	7.31	7.87	1728	0,63	
							-			
						,				
						7				
omments:										
omments:										

Site ID:	MOL	-K.			Field Crew:	***************************************			-	
Deployment / Mid / Retrieval					Flow (circle one): Flowing/ Ponded/ Dry					
		-V			YSI Measurements					
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (µs)	Salinity (ppt)	
10.8-21	1130	°N:	- 30	US:	18.1	7.82	8,02	1641	0.83	
									14	
ocation De	scription:			-			4.		1.40.4	
			-							

					•				-	
omments:								······································	-	
									×	
							-			

Deployment / Mid / Retrieval					Flow (circle one): Flowing/ Ponded/ Dry					
				YSI Measurements						
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinity (ppt)	
10.8-21	1150	°N:		US:	19,6	2.14	7.78	2748	1.43	
Location Des	scription:	•W:		DS:V	1,0		7.7 0			
Location De	scription:	•W:		DS:V			7.70			
Location Des	scription:	•W:		DS:			7.70			
Location Des	-0	•W:		DS:			7.7 0			

Deployment / Mid / Retrieval					Flow (circle one): Flowing/ Ponded/ Dry						
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	YSI Dissolved Oxygen (mg/L)	Measureme pH	Conductivity (µs)	Salinity (ppt)		
10-1-21	./030	on: 50me	1 /) - 0	us: V	18.6	9.05	7.55	1205	0.60		
.ocation be.	-										
Comments:											

		-				T			
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinity (ppt)
10.1.21	1056	°N:	- 21	US:	18.8	7.26	7.83	1298	0,65
	*								
		1-							
ocation De	scription:								
ocation De	scription:								
	scription:								
	scription:								
	scription:								

Site ID: 7mol-21 Deployment / Mid / Retrieval					Field Crew: Pztra D J. Im Flow (circle one): Flowing/ Ponded/ Dry					
			, in the contract of the contr	YSI Measurements						
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рH	Conductivity (µs)	Salinity (ppt)	
10:1:21	1143	°N:	- 30	US:	169	8.68	8,09	1619	0.82	
Location Des	scription;									
							- V			
Comments:							V			

Site ID:	IMDL-3	257	Field Crew:							
Deployment / Mid / Retrieval					Flow (circle one): Flowing/ Ponded/ Dry					
					YSI Measurements					
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (µs)	Salinity (ppt)	
19-1-21	1. 2.	°N:		US:	P. 7	7.22	8,09	2863	1-43	
Comments:								in the second		
							-,			
- I - I - I - I - I - I - I - I - I - I										

Ventura River Algae TMDL Event Details

EVENT DETAILS	
Event ID (Month Year): October 7001	Date: 10/14/2021
Crew Members: SPSH, MC	
Weather (circle): Clear / Partly Cloudy / Overcast / Showers / Rain /	Other
Event Type (check): \(\frac{1}{2}\) Dry (<0.1" rain per day for the preceding	g three days)
☐ Wet (days with ≥0.1" rain and the three o	days following)
Notes:	
OBSERVATION SITES (RIVER FLOW)	
Ventura River at Highway 150 (Baldwin Road)	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
Ventura River at Santa Ana Blvd	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
Ventura River at Casitas Vista Road	
Flow Status: Dry / Ponded / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
Notes:	
Additional Observation Sites	
Additional Observation Site: cfs) Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	,
JNSAMPLED TMDL SITES	
Site ID: THDL-CL Time: _07/3	
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Reason not sampled (if flowing):	
lotes:	
- 101 21	
ite ID: 7MDL-RY Time: 0773	Photos Taken: Upstream / Downstream
low Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing): Notes:	
	~~
Site ID: TMDL-SA Time: 0740	Photos Taken: Upstream / Downstream
low Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):	
Notes:	
Site ID: Time:	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	
Reason not sampled (if flowing):	
Notes:	

Lat: 34.34207 Long: 19.286382 Date: 11/14/2021

Obse	erver(s): SP	SH MC
	habitats: Estima (2007). Total mu	te the percent cover of each habitat type across the entire reach, to within 5%. Definitions follow st equal 100%.
	Ca	scades Rapids Riffles Runs Glides Pools Dry
% of	reach	100
Selec	ct the hydrologic	state that most closely matches the dominant state of the reach:
State	e (check one)	Description, indicators
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.
	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
À	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Uoba	Motor Double	
		ment conditions (at transects A, F, and K, if possible).
Note		ment conditions (at transcets 7), 1) and 1), 11 possible).
Note	3.	
ļ.,		

Site:	TMDL-R	Lat: 39.371753 Long: 119.308593 Date: 10/14/201
Obse	erver(s):	SH, MC
	habitats: Estima (2007). Total mu	te the percent cover of each habitat type <i>across the entire reach,</i> to within 5%. Definitions follow st equal 100%.
	Cas	scades Rapids Riffles Runs Glides Pools Dry
% of	reach	100
Selec	ct the hydrologic	state that most closely matches the dominant state of the reach:
State	e (check one)	Description, indicators
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.
	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
X	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Hobo	Meter Depth (n	n):
Take	a photo to docur	ment conditions (at transects A, F, and K, if possible).
Note	s:	
)		

0740

Site:_	TMDL-S	Lat: <u>34.380666</u> Long: <u>119.307380</u> Date: <u>10.141204</u> SP, MC
Obse	rver(s):	SP, MC
	habitats: Estima 2007). Total mu	te the percent cover of each habitat type <i>across the entire reach</i> , to within 5%. Definitions follow st equal 100%.
	Cas	scades Rapids Riffles Runs Glides Pools Dry
% of ı	reach	100
Selec	t the hydrologic	state that most closely matches the dominant state of the reach:
State	(check one)	Description, indicators
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.
	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
X	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Hobo	Meter Depth (n	n):
Take a	photo to docur	nent conditions (at transects A, F, and K, if possible).
Notes	:	
)		

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

			Dis	charge Meas	urement	_		
Event ID (Month Year): October 701		1st	Measuremer	nt = left bank	(looking downstream)			
Site ID: TMDI - RZ	Vel	ocity Area M	lethod (pref	erred)	Buoy Use only if velo	ant Object		nesible)
Date/Time: 10/14/2011 0855		Distance		/	(Que omy in sen	Float 1	Float 2	-
Crew Members: 5P 5H MC	No.	from Left	Depth (ft)	Velocity		rioat 1	Float 2	r Float 3
21789/186 -119 19-17	1	Bank (ft)		(ft/sec)	Distance (ft)			
Latitude/Longitude: 34.359436, -119 237255	1	\			Float Time (sec)			
Flow (circle one) Flowing / Ponded / Dry Wind Strength:		1		/	Float Re	each Cross	Section (ft)	
Calm/ Light Breeze / Moderate Breeze / Strong Breeze / Windy	2					1/		
Wind Direction: Blowing (circle one) From / To	3		1 1			Upper Section	Middle Section	Lower Section
Photos (check): Upstream Downstream	4	1	1	~	Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,		1	-/	->-	/		1	
discharge comments, etc.) :	5		/-	on particular to the same of t	Depth 1		1	
	6				Depth/2			
Y	7		//	1	Depth 3		1	
			\/ ·	2	Depth 4	-		
	8		X	111	Depth 5	-		
January—December Monthly In Situ Measurements:	9			10	/ Depth 5			
pH: 8 00 pH units EC: µS/cm			1		May-September:	Algae Colle	ction for Cl	alorophyll a
DO: 8,65 mg/L SC: 1357 μS/cm	10				Reach Length (150			
DO% Salinity: 0.6% ppt	11	-			if wetted width > 10			,
Water Temp: 160 °C	12	1			1		_	
Flow (from discharge measurement):cfs		-			1	on Device	7, 0 1	Quantity
	13				(sum # transe	-/-		
	14				Rubber Delimiter (A	rea=12.6cr	n²)	
Samples Collected (check box)	15				PVC Delimiter (Area	=12.6cm ²)		
January—December Monthly Water:	-				Cominger Cassable //A	-	24	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16				Syringe Scrubber (A	rea=5.3cm	1	
Nitrogen (unfiltered):	17				Other (Area		N.	
Dissolved Phosphorus and Nitrogen (field filtered): 🕱	/ 10		-		Number of Transect	s Sampled	(0-11)	
,	18						/	
MaySeptember Dry Season Monthly Algae:	19			1 - 3	Composite Volume	(mL)		
Chlorophyll a (filters—algae):	20		7		Chlorophyll a Volum	ne		1
					Inco GE/E filter 25		اه سیامی ام	1

Ventura River Algae TMDL Field D

Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

Event ID (Month Year): October 7871		1st l	Measuremer	nt = left bank (looking downstream)			,
Site ID: TMDL KS	Velo	ocity Area N	lethod (pref	erred)	Buoy (Use only if velo	ant Object		ossible)
Date/Time: 1/1-1/2011 08-25	1	Distance		Velocity		Float 1	Float 2	Float 3
Crew Members: SP. SH. MC	No.	from Left	Depth (ft)	(ft//sec)	Distance (ft)	110011	1	
14715577 11974944	\	Bank (ft)		19/300	1			
Latitude/Longitude: 34.345527, -119.24949	1				Float Time (sec)	,		
Flow (circle one): Flowing DPonded / Dry		1			Float Re	each Cross	Section (ft)	
Wind Strength: Calro Light Breeze / Moderate Breeze / Strong Breeze / Windy	2	_	/			Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3			0		Section	Section	Section
Photos (check): 10 Upstream Downstream	4				Width	1		
Notes (e.g. homeless, wildlife, horses, swimming/recreation,		-	/		-			
discharge comments, etc.):	5				Depth 1			
	6	1	/	-	Depth 2			
		1			Depth 3		1	
	7		1	(17	Depth 4		-	
	8				Depth 5		-	
January—December Monthly In Situ Measurements:	9			Th	Depth 5			\
pH: 778 pH units EC: µS/em	10	1		111	May-September:	Algae Colle	ction for C	hlorophyll a
DO: 9.37 mg/L SC: h 41 μS/cm	10	_	\	3	Reach Length (150	m if wette	d width ≤ 1	0 m; 250 m
DO: % Salinity: 0.62 ppt	11		1		if wetted width > 10) m):	_/	
Water Temp: <u>13. て</u> °C	12	/	1		Collecti	on Device	1	Quantity
Flow (from discharge measurement):cfs	12/				(sum # transe		vice)	Quantity
	13 /				Rubber Delimiter (A	-/	150	
	14					1	n.t.	
Samples Collected (check box)	1/5				PVC Delimiter (Area	=12 (6cm²)		
January—December Monthly Water:	lac			1	Syringe Scrubber (A	rea=5.3cm	2)	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	/16				- /	1		
Nitrogen (unfiltered):	/ 17				Other (Area=		/	
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transect	ts Sampled	(0-11)	
					Composite Volume	(ml)	1	
May—September Dry Season Monthly Algae:	19			1	composite volume	(11112)		
Chlorophyll a (filters—algae):	20			1	Chlorophyll a Volun	ne		
					(use GF/F filter, 25	mL preferr	ed volume)	1 AV

Ventura River Algae TMDL Field Data Sheet (Reaches 1-4) - Page 1 of 1

Discharge Measurement 1st Measurement = left bank (looking downstream) Event ID (Month Year): October 262 Site ID: THILL -P Velocity Area Method (preferred) **Buoyant Object Method** Date/Time: 14/14/2000 (Use only if velocity area method not possible) **Distance** Crew Members: 5P, SA, MO Float 1 Float 2 Float 3 Velocity Nol from Left Depth (ft) (ft/sec) Distance (ft) Bank (ft) Latitude/Longitude: 34.282015 -119.30903 Float Time (sec 1 Flow (circle one): Flowing / Ponded / Dry Float Reach Cross Section (ft) Wind Strength: 2 Calm/ Light Breeze / Moderate Breeze / Strong Breeze / Windy Upper Middle Lower 3 Wind Direction: Blowing (circle one) From / To Section Section Section Photos (check): DUpstream Downstream 4 Width Notes (e.g. homeless, wildlife, horses, swimming/recreation, Depth A 5 discharge comments, etc.): Depth 2 6 Depth 3 Depth 4 Depth 5 9 January—December Monthly In Situ Measurements: pH: 8.1.2 pH units EC: us/cm May-September: Algae Collection for Chlorophyll a 10 DO: 4.53 mg/L SC: 16.50 μS/cm Reach Length (150 m if wetted width ≤ 10 m; 250 m DO: ______ Salinity: O. XV ppt 11 if wetted width > 10 m): Water Temp: 17.7 °C 12 Collection Device Quantity Flow (from discharge measurement): (sum # transects per Device) 13 Rubber Delimiter (Area 12.6cm²) 14 PVC Delimiter (Area=12.6cm Samples Collected (check box) 15 January—December Monthly Water: Syringe Scrubber (Area 5.3cm²) 16 Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as Other (Area= Nitrogen (unfiltered): 17 Dissolved Phosphorus and Nitrogen (field filtered): Number of Transects Sampled (0-11) Composite Volume (mL) **[**9 May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): Chlorophyll a Volume 20 (use GF/F filter, 25 mL preferred volume)

Ventura River Algae TMDL Field Data Sheet (Estuary) - Page 1 of 1

Ventura River Algae TMDL—Estuary Details

Sample Longitude

Site ID: TMDL-Est Event ID (Month Year): OCTUBER ZOOZ Date/Til Crew Members: SC. 314, AC	me: 10/14/201 1010
Weather (circle one): Clear / Partly Cloudy / Overcast / Rainy / Foggy Ocean Inlet (circle	one): Open / Restricted / Closed
Direction of Tide: Ebb / Flood / Slack N/A Time of Low Tide:	17.05 Time of High Tide: 1742
Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze / Windy / Strong Wind	Wind Direction: Blowing From / To
lotes (e.g. homeless, wildlife, dogs, swimming/recreation):	
	\
	Water Samples Collected (check box) [Collect at Floating Macroalgae Quadrat 1, Transect 1]
lonthly (Jan—Dec):	
H: 816 pH units = EC: pS/cm Water Temp: 16.5°C	[Collect at Floating Macroalgae Quadrat 1, Transect 1]
Nonthly (Jan—Dec): H: 6 6 pH units - EC: μS/cm Water Temp: 16 5 °C O: 8.77 mg/L SC: 3343 μS/cm	[Collect at Floating Macroalgae Quadrat 1, Transect 1] Monthly Water (Jan—Dec):
00: <u>8.77</u> mg/L SC: <u>2343</u> μS/cm	[Collect at Floating Macroalgae Quadrat 1, Transect 1] Monthly Water (Jan—Dec): Nitrogen, total and dissolved:

Ventura River Algae TMDL Event Details

<u>EVENT DETAILS</u> Event ID (Month Year): _	Och ber, 2021	Date: 10.27.21
Veather (circle): Clear/	Partly Cloudy / Overcast / Showers / Rain	/ Other
vent Type (check):	Dry (<0.1" rain per day for the preceding	ng three days)
	Wet (days with ≥0.1" rain and the three	e days following)
Notes:	Rain on 10.2	edays following) 15.2 ~2 inches >0.1 inch
		>0. linch
OBSERVATION SITES (I	RIVER FLOW)	
	A CONTRACTOR OF THE RESIDENCE OF THE RES	
	way 150 (Baldwin Road)	
	led / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
Notes:		
Vantuus Divan at Canta	And Divid	
Ventura River at Santa	led / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
Notes:	Construction of	bridge, no flow
iii	The state of the s	
Ventura River at Casit	as Vista Road	
	led Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
	Low flow	, increase a series of the ser
1401031		
Additional Observation	n Sito:	
	n Site:	Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond	ied / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
	ied / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond	ied / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond	ied / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond	ded / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes:	ded / Flowing (Estimated Flow:cfs)	
Flow Status: Dry / Pond Notes:	ded / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes:	res Time:cfs)	Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes:	res Time:cfs) led / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes:	res Time:cfs)	Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes:	res Time:cfs) led / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes: UNSAMPLED TMDL SIT Site ID: Flow Status: Dry / Pond Reason not sampled (if finances: Site ID: Flow Status: Dry / Pond	Time: Ti	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes:	Time: Compared Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes:	Time: Ti	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes:	Time: Ti	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes:	Time:	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes: UNSAMPLED TMDL SIT Site ID: Flow Status: Dry / Pond Reason not sampled (if fin Notes: Flow Status: Dry / Pond Reason not sampled (if fin Notes: Site ID: Flow Status: Dry / Pond Reason not sampled (if fin Notes: Site ID: Flow Status: Dry / Pond	Time: Cfs Flowing (Estimated Flow:cfs	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes: UNSAMPLED TMDL SIT Site ID: Flow Status: Dry / Pond Reason not sampled (if fin Notes: Site ID: Flow Status: Dry / Pond Reason not sampled (if fin Notes: Site ID: Flow Status: Dry / Pond Reason not sampled (if fin Reason not sampled (if fine) Reason not sampled (if fine)	Time: Ced / Flowing (Estimated Flow:cfs) Ced / Flowing (Estimated Flow:	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes: UNSAMPLED TMDL SIT Site ID: Flow Status: Dry / Pond Reason not sampled (if fin Notes: Site ID: Flow Status: Dry / Pond Reason not sampled (if fin Notes: Site ID: Flow Status: Dry / Pond Reason not sampled (if fin Reason not sampled (if fine) Reason not sampled (if fine)	Time: Cfs Flowing (Estimated Flow:cfs	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes: UNSAMPLED TMDL SIT Site ID: Flow Status: Dry / Pond Reason not sampled (if final Notes: Flow Status: Dry / Pond Reason not sampled (if final Notes: Site ID: Flow Status: Dry / Pond Reason not sampled (if final Notes: Flow Status: Dry / Pond Reason not sampled (if final Notes:	Time: cfs	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes: UNSAMPLED TMDL SIT Site ID: Flow Status: Dry / Pond Reason not sampled (if final Notes: Site ID: Flow Status: Dry / Pond Reason not sampled (if final Notes: Site ID: Flow Status: Dry / Pond Reason not sampled (if final Notes: Site ID: Flow Status: Dry / Pond Reason not sampled (if final Notes: Site ID: Site ID:	Time: Comparison of the com	Photos Taken: Upstream / Downstream
Flow Status: Dry / Pond Notes:	Time: Time:	Photos Taken: Upstream / Downstream

Cascade % of reach Select the hydrologic state Late (checkeone) Dec Hyperrheic War (flooding) par	te percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the percent cover of each habitat type across the entire reach, to within 5%. Definitions followed by the entire reach, to within 5%. Definitions followed by the entire reach, to within 5%. Definitions followed by the entire reach, to within 5%. Definitions followed by the entire reach, to within 5%. Definitions followed by the entire reach the entire reach.
Cascade 6 of reach elect the hydrologic state ale (caselcone) Dec Hyperrheic Wa (flooding) par	e that most closely matches the dominant state of the reach: Security indicators Security i
elect the hydrologic state atic (speek one) Dec Hyperrheic War (flooding) par	that most closely matches the dominant state of the reach: Seminary marginals and turbid or carrying suspended particles. Mayoment of cheered
elect the hydrologic state and (consolvoine) Hyperrheic Wa (flooding) part Eurheic Wa	seription, indicators Iter may be above banks and turbid or carrying suspended particles. Movement of streets
Hyperrheic Wa (flooding) par	seription, indicators Iter may be above banks and turbid or carrying suspended particles. Movement of streets
Hyperrheic War (flooding) par	iter may be above banks and turbid or carrying suspended particles. Movement of change
Eurheic Wa	ster may be above banks and turbid or carrying suspended particles. Movement of streamb
	ticles may occur.
	ter always below banks (if banks are evident). Discharge is high enough to allow access to st of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, s, glides). Gravels will generally be stable on the streambed.
Oligorheic Disc (limited flow) Surf	charge is low but sufficient to connect pools and other aquatic habitats through small rivule face water is more or less continuous throughout reach. Riffles are scarce.
(charge is close to zero, may not be visibly evident. Pools may be abundant, but may be connected. This state may not exist in sandy streams with rapid groundwater infiltration or crete channels.
	st of the stream bed is devoid of surface water, although substrate may remain wet enough upport active hyporheic life. Terrestrial fauna may be common on the stream bed. This stat not exist in concrete or bedrock channels
/1/ ombb	entire stream bed is devoid of surface water, and the substrate (if present) is too dry to port active hyporheic life (although dessication-resistent life stages may be present). Soil sture in the streambed is not discernibly greater than in nearby soils above the banks.
bo Meter Depth (m):	
ke a photo to document co	conditions (at transects A, F, and K, if possible).
tes:	

			Lat:	Long:	Date: 10.27.3
Ob	server(s):	55			
Flo Od	w habitats: Estim e (2007). Total m	ate the percent cove ust equal 100%.	er of each habitat type	across the entire reach, to	within 5%. Definitions follow
	e.	ascades Rapids	Riffles Runs	Glides Pools	Dry
% c	freach				×
Sele	ect the hydrologic	state that most clos	sely matches the domin	nant state of the reach:	
	E (dheek one)	Desergations indic	ators		
	Hyperrheic (flooding)	Water may be ab particles may occ	ove banks and turbid our.	r carrying suspended part	icles. Movement of streamber
	Eurheic (baseflow)	ar	in bed. Midliv dillerent	evident). Discharge is high flow microhabitats may be able on the streambed.	enough to allow access to e evident (e.g., riffles, pools,
	Oligorheic (limited flow)	Discharge is low b Surface water is n	ut sufficient to connect nore or less continuous	t pools and other aquatic throughout reach. Riffles	habitats through small rivulets are scarce.
]	Arheic (disconnected pools)	Discharge is close disconnected. This concrete channels	state may not exist in	ibly evident. Pools may be sandy streams with rapid	e abundant, but may be groundwater infiltration or in
]	Hyporehic (subsurface water)	an ambhair acciar i	n bed is devoid of surfa hyporheic life. Terrestri oncrete or bedrock chai	al launa may he common	rate may remain wet enough on the stream bed. This state
Z/	Edaphic (dry)	amblant carrier HAD	which me iaithoned us	e water, and the substrate essication-resistent life sta bly greater than in nearby	
obo	Meter Depth (n	ı):			
ake	a photo to docun	nent conditions (at t	ransects A, F, and K, if p	oossible).	
ote	Cons	truction			

SiteCV/		Lat:	Long:	Date: 10.27.21
Observer(s):	51			
Flow habitats: Estim Ode (2007). Total m	ate the percent out of the second of the sec	over of each habitat type	across the entire reach, to	within 5%. Definitions follow
C	ascades Rapid	s Riffles Runs	Glides Pools	Bry
% of reach		80	20	
Select the hydrologic	state that most	closely matches the dom	inant state of the reach:	,
faie (check one)	Description,			
Hyperrheic (flooding)	Water may be particles may	above banks and turbid occur.	or carrying suspended parti	cles. Movement of streambed
Eurheic (baseflow)	most of the st	below banks (if banks are ream bed. Many differen Gravels will generally be s	e evident). Discharge is high t flow microhabitats may be table on the streambed.	enough to allow access to evident (e.g., riffles, pools,
Oligorheic (limited flow)	Discharge is lo Surface water	w but sufficient to conne is more or less continuou	ct pools and other aquatic has throughout reach. Riffles	nabitats through small rivulets. are scarce.
Arheic (disconnected pools)	Discharge is cle disconnected. concrete chan	ins state may not exist i	isibly evident. Pools may be n sandy streams with rapid	abundant, but may be groundwater infiltration or in
Hyporehic (subsurface water)	co auphor cacti	ream bed is devoid of sur ive hyporheic life. Terrest in concrete or bedrock ch	rial fauna may he common	ate may remain wet enough on the stream bed. This state
Edaphic (dry)	ample of receive	THE PROPERTY OF THE PROPERTY OF	ce water, and the substrate dessication-resistent life sta nibly greater than in nearby	man manual and manual and manual
lobo Meter Depth (n	ı):		· · · · · · · · · · · · · · · · · · ·	
		at transects A, F, and K, if	possible).	
otes:		Market Market P.	M. 18 - 1	

Ventura River Algae TMDL Event Details

EVENT DETAILS Event ID (Month Year): November 2021	Date: 11/10/2021
Weather (circle): Clear / Partly Cloudy / Overcast / Showers / Rain / © Event Type (check): Dry (<0.1" rain per day for the preceding □ Wet (days with ≥0.1" rain and the three d	three days)
Notes:	
OBSERVATION SITES (RIVER FLOW)	
Ventura River at Highway 150 (Baldwin Road) Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs) Notes:	Photos Taken: Upstream / Downstream
/entura River at Santa Ana Blvd low Status: Dry / Ponded / Flowing (Estimated Flow: cfs) lotes:	Photos Taken: Upstream / Downstream
/entura River at Casitas Vista Road low Status: Dry / Ponded / Flowing (Estimated Flow: cfs) lotes:	Photos Taken: Upstream / Downstream
Additional Observation Site: cfs) low Status: Dry / Ponded / Flowing (Estimated Flow: cfs) lotes:	Photos Taken: Upstream / Downstream
te ID: TM - CL Time: cfs) ow Status: Dry / Ponded / Flowing (Estimated Flow: cfs) eason not sampled (if flowing):	
te ID: Time: Cfs) cow Status : Dry / Ponded / Flowing (Estimated Flow: cfs) cason not sampled (if flowing): cfs) cotes:	Photos Taken: Upstream / Downstream
te ID: Time: cfs) ow Status : Dry / Ponded / Flowing (Estimated Flow: cfs) eason not sampled (if flowing): otes:	Photos Taken: Upstream / Downstream
ite ID: Time: cfs) ow Status: Dry / Ponded / Flowing (Estimated Flow: cfs) eason not sampled (if flowing):	

Site	TMDL	Lat: 34, 34212 Long: 119, 25650 Date: 11/10/201
Obs	erver(s):S	P.E
	v habitats: Estima (2007). Total mu	te the percent cover of each habitat type across the entire reach, to within 5%. Definitions follow st equal 100%.
	Ca	scades Rapids Riffles Runs Glides Pools Dry
% of	reach	100
Sele	ct the hydrologic	state that most closely matches the dominant state of the reach:
Stat	e (check one)	Description, indicators
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.
	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
X	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Hobe	o Meter Depth (n	n):
Take	a photo to docu	ment conditions (at transects A, F, and K, if possible).
Note	25.	

Ode	e (2007). Total mu Ca	te the percent cover of each habitat type <i>across the entire reach</i> , to within 5%. Definitions follow st equal 100%. scades Rapids Riffles Runs Glides Pools Dry
	f reach	state that most closely matches the dominant state of the reach.
	e (check one)	state that most closely matches the dominant state of the reach: Description, indicators
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.
O ₀	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
×	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Hob	o Meter Depth (n	n):
Take	a photo to docui	ment conditions (at transects A, F, and K, if possible).
Note	25:	

Site:	11111	Lat; 39, 37892 Long: 119 50847 Date: 11/10/202
Obse	erver(s):	, 5.6
	habitats: Estima (2007). Total mu	te the percent cover of each habitat type <i>across the entire reach,</i> to within 5%. Definitions follow st equal 100%.
	Cas	scades Rapids Riffles Runs Glides Pools Dry
% of	reach	100
Solor	et the hydrologic	state that most closely matches the dominant state of the reach:
	(check one)	Description, indicators
State	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.
)	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
Ŕ	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Hobo	Meter Depth (m	n):
Take	a photo to docur	ment conditions (at transects A, F, and K, if possible).
Notes	5.	
)		

Ventura River Algae TMDL Field Da Sheet (Reaches 1—4) - Page 1 of 1

		4.		charge Meas				
Event ID (Month Year): Nacmber		151	vieasuremer	nt = left bank	(looking downstream)			
Site ID: TMDL-R3	Velocity Area Method (preferred)				ant Object			
Date/Time: 11/10/201 0850		Distance			(Use only if vel		2.000	1
Crew Members: 5C	No.	from Left	Depth (ft)	Velocity		Float 1	Float 2	Float 3
range dio		Bank (ft)		(ft/sec)	Distance (ft)		1	
Latitude/Longitude: 34.34545 119, 25935	1				Float Time (sec)		/	
Flow (circle one): Flowing) Ponded / Dry		1			Float R	each Cross	Section (ft)	
Wind Strength:	2					Upper	Middle	Lower
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From To	3					Section	Section	Section
Photos (check): ** Upstream Downstream	4			/	Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,				/				-
discharge comments, etc.) :	5				Depth 1		1	-
	6		- /	W(Depth 2			
	7		1		Depth 3			
		1	-		Depth 4			
-1	8		1	2	Depth 5	18.		1
January—December Monthly In Situ Measurements:	9		/	14	<u> </u>	San Carlot		
pH: 7.78 pH units EC: μS/cm >	10		1/	1	May-September:			
DO: <u>\$ 54</u> mg/L SC: <u> </u> μS/cm	11	7	V	M	Reach Length (150			0 m; 250 m
DO:% Salinity: O.60 ppt	11		A	#	if wetted width > 10	0 m):		_/
Water Temp: 15,14 °C	12	1		10	Collect	on Device		Quantity
Flow (from discharge measurement):cfs	13	/			(sum # trans	ects per De	vice)	
	14				Rubber Delimiter ()	rea=12.6cr	n²)	
Samples Collected (check box)	15	1			PVC Delimiter (Area	=12.6cm ²)		
January—December Monthly Water:	-	1	\	-	Syringe Scrubber (A	rea=5/3cm	2)	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16		1	\	/	, ca 3.pa.	<u></u>	
Nitrogen (unfiltered):	17	-		\	Other (Area=	1)	
Dissolved Phosphorus and Nitrogen (field filtered): 🗡	18/				Number of Transec	ts Sampled	(0-11)	
May—September Dry Season Monthly Algae:	16				Composite Volume	(mL)	1	
Chlorophyll a (filters—algae):	1			-	Chiaronhull a Value		1	
emorophym a timera algaer.	/20				Chlorophyll a Volur (use GF/F filter, 25		nd valuma)	
				1	Juse Gr/F Iliter, 25	init bi elerre	u volume)	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

5 10 (24) 1 1 - 3m1	1st '		rt = left bank ((looking downstream))		100
Site ID: TMDL RZ	Velocity Area M	/lethod (pref	erred)		ant Object		
Date/Time: 11/10/2011 0935	1	1	-/-	(Use only if velo	ocity area m	ethod not po	ssible)
Crew Members: \$P 5C	Distance from Left	Donth (ft)	Velocity		Float 1	Float/2	Float 3
	No from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)			
Latitude/Longitude: 34.38436, 14 Z174Z	1	1		Float Time (sec)			
Flow (circle one): Flowing / Ponded / Dry	1		/	Float R	each cross	Section (ft)	
Wind Strength:	2			Float ive	/		
Calm/ Light Breeze / Moderate Breeze / Strong Breeze / Windy	2				Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3	1			Section	Section	Section
Photos (check): Downstream	4	/		Width /			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5	1		Depth 1		1	
discharge comments, etc.) :		-	2	Depth 2			
flantakin at AB	6						
	7		Z	Depth 3			-
		1/	0	Depth 4	3		
	8	X	4	Depth 5			
January—December Monthly In Situ Measurements:	9		6	1			
pH: 7,57 pH units EG: µS/cm	10		9	May-September:	Algae Colle	ection for C	hlorophyll a
DO: 7,77 mg/L SC: 127 μS/cm	10 /	-	- (Reach Length (150	m if wette	d width ≤ 1	0 m; 250 m
DO:% Salinity: 0.64 ppt	11 /			if wetted width > 10	ວ m):	1	
Water Temp: 18:1 °C	12			Collecti	ion Device	/	Quantity
Flow (from discharge measurement): cfs		1		(sum # transe			Quantity
	13				1		
	14		\	Rubber Delimiter (A	Area=12.60	m-)	
Samples Collected (check box)	15 /			PVC Delimiter (Area	a=12.6cm ²)		
January—December Monthly Water:	/		1	Syringe Scrubber (A	rea=5 3cm	2	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16			-	11 Ea-3.3C.	1	
Nitrogen (unfiltered):	17 /			Other (Area=/		1	
Dissolved Phosphorus and Nitrogen (field filtered):	18			Number of Transec	ts Samplec	(0-11)	
	//			Composite Volume	(mL)		
May—September Dry Season Monthly Algae:	/19						-
Chlorophyll a (filters—algae):	20			Chlorophyll a Volun			
				(use GF/F filter, 25	mL preferr	ed volume)	1

Sawyer Carman Ventura River Algae TMDL Field D: Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

Event ID (Month Year): November 2011		1st l	Vleasuremer	nt = left bank (looking downstream)			
Site ID: TMDL-R1	Vel	ocity Area N	lethod (pref	erred) /	Buoy (Use only if velo	ant Object		ossible)
Date/Time: 1025 Crew Members: \$8	No.	Distance from Left	Depth (ft)	Velocity		Float 1	Float 2	Float 3
	146.	Bank (ft)	Depth (it)	(ft/sec)	Distance (ft)			1 7
Latitude/Longitude: 34 94 14 19, 301/2	1				Float Time (sec)			
Flow (circle one): Flowing / Ponded / Dry Wind Strength:	2	1			Float R	each Cross	Section (ft)	-7
Calm/ Light Breeze / Moderate Breeze / Strong Breeze / Windy						Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Section	Section	Section
Photos (check): XUpstream Downstream	4			0	Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5			<	Depth 1			
VCLT members during uptrash in	6		/		Depth 2		1	
Storam		1	/		Depth 3			
	7		<u>X</u>	7	Depth 4			
	8	/		11)	Depth 5			
January—December Monthly In Situ Measurements:	9			m	1/ Behins			
pH: 7.90 pH units _EC: µS/cm	10			8	May-September:			
DO: 9,0 ^L mg/L SC: 1/59 μS/cm	11	1		70	Reach Length (150			0 m; 250 m
DO: % Salinity: 0.84 ppt		1	1		if wetted width > 10	n m):	14	/
Water Temp: 19. °C Flow (from discharge measurement): cfs	12		1			ion Device		Quantity
riow (from discharge measurement).	13				(sum # trans			
	14	/			Rubber Delimiter (A	\rea=12.6c	2/1 ²)	
Samples Collected (check box)	15 /				PVC Delimiter (Area	1=12.6cm ²)		
January—December Monthly Water:	16				Syringe Scrubber	rea=5.3cm	12)	
Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as	-/-				Other (Area		1	
Nitrogen (unfiltered):	17							
Dissolved Phosphorus and Nitrogen (field filtered):	18			Market State	Number of Transec	ts Sampled	d (0-11)	
May—September Dry Season Monthly Algae:	19			A.	Composite Volume	(mL)		
Chlorophyll <i>a</i> (filters—algae):	20				Chlorophyll a Volum	ne		
		1	1		(use GF/F filter, 25	mL preferr	ed volume)	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

1st Measurement = left bank (looking downstream)

Event ID (Month Year):	-					
Site ID:						
Date/Time:						
Crew Members:						
V						
Latitude/Longitude:						
Flow (circle one): Flowing / Ponded / Dry						
Wind Strength: Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy						
Photos (check): □ Upstream □ Downstream						
Notes (e.g. homeless, wildlife, horses, swimming/red	reation,					
discharge comments, etc.) :						
January—December Monthly In Situ Measurements:						
pH:pH units EC:μS/cm						
DO: mg/L SC: μS/cm	3					
DO: mg/L SC: μS/cm DO: % Salinity: ppt						
DO: % Salinity: ppt						
	•					
DO: % Salinity: ppt Water Temp: °C						
DO: % Salinity: ppt Water Temp: °C						
DO: % Salinity: ppt Water Temp: °C						
DO: % Salinity: ppt Water Temp: °C Flow (from discharge measurement): cfs						
DO: % Salinity: ppt Water Temp: °C Flow (from discharge measurement): cfs Samples Collected (check box)	te as					
DO:% Salinity: ppt Water Temp:°C Flow (from discharge measurement): cfs Samples Collected (check box) January—December Monthly Water: Total Phosphorus , Total Nitrogen, and Nitrate + Nitrit	te as					
DO:% Salinity: ppt Water Temp:°C Flow (from discharge measurement): cfs Samples Collected (check box) January—December Monthly Water: Total Phosphorus , Total Nitrogen, and Nitrate + Nitrit Nitrogen (unfiltered):						
DO: % Salinity: ppt Water Temp: °C Flow (from discharge measurement): cfs Samples Collected (check box) January—December Monthly Water: Total Phosphorus , Total Nitrogen, and Nitrate + Nitrit Nitrogen (unfiltered):	a					
DO:% Salinity: ppt Water Temp:°C Flow (from discharge measurement): cfs Samples Collected (check box) January—December Monthly Water: Total Phosphorus , Total Nitrogen, and Nitrate + Nitrit Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered):	a					

Val	locity Avon M	lathad Inves	arrod)
Ve	locity Area M	etnoa (prete	errea)
No.	Distance from Left Bank (ft)	Depth (ft)	Velocity (ft/sec)
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			,
19			
20			

Buoy (Use only if velo	r ant Object ocity aréa m		ossible)
	Float 1	Float 2	Float 3
Distance (ft)			
Float Time (sec)			
Float R	each Cross	Section (ft)	
	Upper Section	Middle Section	Lower Section
Width	M. de	*	
Depth 1			
Depth 2			
Depth 3			
Depth 4			
Depth 5			

Reach Length (150 m if wetted width ≤ 10 m; 250 m if wetted width > 10 m):				
Collection Device (sum # transects per Device)	Quantity			
Rubber Delimiter (Area=12.6cm²)				
PVC Delimiter (Area=12.6cm²)				
Syringe Scrubber (Area=5.3cm²)				
Other (Area=				
Number of Transects Sampled (0-11)				
Composite Volume (mL)				
Chlorophyll <i>a</i> Volume (use GF/F filter, 25 mL preferred volume)				

May-September: Algae Collection for Chlorophyll a

Ventura River Algae TMDL Field Data Sheet (Estuary) - Page 1 of 1

Ventura River Algae TMDL—Estuary Details

Site ID: TMDL-Est Event ID (Month Year): Navember Zozl	Date/Time: 11/10/2021 11:10
Crew Members: SP SC	
Weather (circle one); Elear / Partly Cloudy / Overcast / Rainy / Foggy	Ocean Inlet (circle one): Open / Restricted / Closed
Direction of Tide: Ebb / Flood / Slack / N/A	Time of Low Tide: 672 Time of High Tide: 136
Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze /	
Notes (e.g. homeless, wildlife, dogs, swimming/recreation):	

In Situ Measurements (Measure at Floating M Monthly (Jan—Dec):	<u>µS/cm</u> Water Temp: <u>18.</u> С °С
Photos: Coceanward Landward	
Sample Latitude:	34.27521
Sample Longitude	-119.30772

Water Samples Collected (check box)		
[Collect at Floating Macroalgae Quadr	at 1, Transect 1]	
Monthly Water (Jan—Dec):		
Nitrogen, total and dissolved:	3 3 T	
Phosphorus, total and dissolved:		
Nitraté + Nitrite as Nitrogen:		
. ,		
	111	
	3	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

Event ID (Month Year):		1st	Measuremen	it = left bank	(looking downstream)			
Site ID:	Ve	locity Area M	lethod (prefe	erred)	Buoy (Use only if vel	ant Object		ossible)
Date/Time:		Distance		Velocity		Float 1	Float 2	Float 3
Crew Members:	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)	nout 1	Tiout E	Tiout 5
Latitude/Longitude:	-	Dank (i.e)			Float Time (sec)			
Flow (circle one): Flowing / Ponded / Dry	1					anah Cunan	Castian (ft)	
Wind Strength:	2				rioat K		Section (ft)	
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	3					Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To		-				Section	Section	Section
Photos (check): Upstream Downstream	4				Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5				Depth 1			
discharge comments, etc.) :	6				Depth 2			
	7				Depth 3			
	-				Depth 4			
	8				Depth 5			
January—December Monthly In Situ Measurements:	9							
pH: pH units EC: μS/cm	10				May—September:			
DO: mg/L SC: μS/cm	11				Reach Length (150) m; 250 m
DO: % Salinity: ppt	11				if wetted width > 10) m):		
Water Temp:°C	12				Collecti	on Device		Quantity
Flow (from discharge measurement): cfs	13				(sum # transe	ects per De	vice)	
	14				Rubber Delimiter (A	rea=12.6cr	n²)	
Samples Collected (check box)	15				PVC Delimiter (Area	=12.6cm²)		
January—December Monthly Water:	16				Syringe Scrubber (A	rea=5.3cm	²)	1
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16							
Nitrogen (unfiltered):	17				Other (Area=			
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transect	s Sampled	(0-11)	
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)	- 4	
Chlorophyll a (filters—algae):	20				Chlorophyll a Volum	ne		
					(use GF/F filter, 25 r	nL preferre	ed volume)	

Ventura River Algae TMDL Event Details

EVENT DETAILS	11171
Event ID (Month Year): NOV - 00 dl	Date: 11/2-1/4-1
Crew Members:	
Weather (circle): Clear / Partly Cloudy / Overcast / Showers / Rain / Ot	her
Event Type (check): Ory (<0.1" rain per day for the preceding th	ree days)
wet (days with ≥0.1" rain and the three day	rs following)
Notes:	
ODCEDVATION CITES (DIVED ELOVA)	
OBSERVATION SITES (RIVER FLOW)	12
Ventura River at Highway 150 (Baldwin Road)	- Cownstream
Flow Status Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes:	
Ventura River at Santa Ana Blvd	NO/Prowristream
Flow Status : Dry/ Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes: Major Construction - could only	arive par
	11 3.5
Ventura River at Casitas Vista Road	Journetream
Flow Status: Dry / Ponded / Flowing (Estimated Flow:cfs)	Photos Taken: Upstream / Downstream
Notes:	
Flow Status · Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
	Photos Taken: Upstream / Downstream
Notes:	Photos Taken: Upstream / Downstream
Notes:	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Notes: UNSAMPLED TMDL SITES Site ID:	
Notes:	
Notes:	
UNSAMPLED TMDL SITES Site ID: Time: Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs) Reason not sampled (if flowing): Notes:	Photos Taken: Upstream / Downstream
Notes:	
Notes: UNSAMPLED TMDL SITES Site ID: Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs) Reason not sampled (if flowing): Notes: Site ID: Flow Status: Dry / Ponded / Flowing (Estimated Flow: cfs)	Photos Taken: Upstream / Downstream
Notes: UNSAMPLED TMDL SITES Site ID: Time: cfs) Reason not sampled (if flowing): time: cfs) Notes: Time: cfs) Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs)	Photos Taken: Upstream / Downstream
Notes: UNSAMPLED TMDL SITES Site ID: Time: cfs) Reason not sampled (if flowing): time: cfs) Notes: Time: cfs) Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs)	Photos Taken: Upstream / Downstream
UNSAMPLED TMDL SITES Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Notes: Time: cfs) Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs) Notes: cfs)	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
UNSAMPLED TMDL SITES Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Notes: Time: cfs) Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs) Notes: Time: cfs)	Photos Taken: Upstream / Downstream
UNSAMPLED TMDL SITES Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs) Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs) Site ID: Time: cfs)	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
UNSAMPLED TMDL SITES Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs) Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs) Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs)	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
UNSAMPLED TMDL SITES Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs) Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs) Site ID: Time: cfs) Reason not sampled (if flowing): cfs) Reason not sampled (if flowing): cfs)	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Notes:	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Notes: UNSAMPLED TMDL SITES	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream
Notes:	Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream Photos Taken: Upstream / Downstream

	C	ascades Rapid	ls Riffles	Runs	Glides	Pools	Dry	
% of	reach		20		80			
iele	ct the hydrologi	c state that most	t closely matche	s the domin	ant state of t	he reach:		
itati	e (check one)	Description,						
	Hyperrheic (flooding)	Water may b particles may		and turbid o	r carrying sus	pended part	icles. Movem	ent of streambed
	(baseflow)		s below banks (llow access to g., riffles, pools,
	(Dascilov)		Gravels will ge					
1	Oligorheic	Discharge is	low but sufficie				habitats thro	ugh small rivule
*	Oligorheic (limited flow)		low but sufficient	nt to connec	t pools and o	ther aquatic		ugh small rivule
*	(limited flow)	Surface wate	er is more or les	nt to connects continuous	t pools and o	ther aquatic reach. Riffles	are scarce.	
		Surface water Discharge is disconnected	close to zero, m	ay not be vi	t pools and of throughout is throughout.	ther aquatic reach. Riffles Pools may b	e abundant,	
	(limited flow) Arheic	Surface water Discharge is	close to zero, m	ay not be vi	t pools and of throughout is throughout.	ther aquatic reach. Riffles Pools may b	e abundant,	but may be
	(limited flow) Arheic (disconnected)	Discharge is disconnected concrete cha	close to zero, mad. This state madennels.	ay not be vi	t pools and of throughout is sibly evident. Is sandy stream	ther aquatic reach. Riffles Pools may b ns with rapid	e abundant, d groundwate trate may ren	but may be er infiltration or
	Arheic (disconnected pools) Hyporehic (subsurface	Discharge is disconnected concrete charto support actions.	close to zero, mad. This state madennels.	ay not be view of surfections. Terresting	t pools and of throughout is sibly evident. It sandy stream and the stream and th	ther aquatic reach. Riffles Pools may b ns with rapid	e abundant, d groundwate trate may ren	but may be er infiltration or
	(limited flow) Arheic (disconnected pools) Hyporehic	Discharge is disconnected concrete charto support actions.	close to zero, mad. This state madennels.	ay not be view of surfections. Terresting	t pools and of throughout is sibly evident. It sandy stream and the stream and th	ther aquatic reach. Riffles Pools may b ns with rapid	e abundant, d groundwate trate may ren	but may be er infiltration or
	Arheic (disconnected pools) Hyporehic (subsurface water) Edaphic	Discharge is disconnected concrete character to support at may not exist. The entire st	close to zero, mad. This state madennels. Stream bed is decrete or the concrete or the concre	ay not be vi y not exist in evoid of surf life. Terresti bedrock cha	sthroughout is sibly evident. It sandy stream and sannels annels annels	ther aquatic reach. Riffles hough substitute the su	e abundant, de groundwate trate may remain on the stream	but may be er infiltration or main wet enough am bed. This start
	Arheic (disconnected pools) Hyporehic (subsurface water)	Discharge is disconnected concrete character to support as may not exist. The entire stronger support activities and support activities.	close to zero, mad. This state madennels. stream bed is dective hyporheic tin concrete or	ay not be visy not exist in bedrock characters (although of surface)	t pools and of throughout is throughout is sibly evident. It sandy stream annels annels dessication-relation-re	ther aquatic each. Riffles hough substitute to the substratistic sistent life s	trate may remain on the stream	but may be er infiltration or main wet enough am bed. This start of the present o

				Assessme	nt of hyd	rologie sta	tes		
Si	ite: VR - Ba	ldwin	Rd	Lat:		Long		Date	11-21-71
00	bserver(s):	KW							
	ow habitats: Estim de (2007). Total m			er of each ha	bitat type a	cross the ent	ire reach, to	within 5%. De	finitions fellow
	C	ascades	Rapids	Riffles	Runs	Glides	Pools	Dry	
%	of reach							100	
Sel	lect the hydrologic	c state tha	at most clos	sely matches	the domin	ant state of t	he reach:		
Sta	te (check one)		ption, indic						
	Hyperrheic (flooding)		may be ab		nd turbid or	carrying sus	oended part	icles. Movem	ent of streambed
	Eurheic (baseflow)	most o	f the stream	m bed. Man	y different f		oitats may b		low access to ., riffles, pools,
	Oligorheic (limited flow)	Dischar	rge is low be water is m	ut sufficient nore or less	to connect continuous	pools and ot throughout r	her aquatic each. Riffles	habitats thro are scarce.	ugh small rivulets.
	Arheic (disconnected pools)	disconr	ge is close nected. This e channels	s state may	y not be visi	bly evident. I	Pools may b	e abundant, b groundwate	out may be r infiltration or in
	Hyporehic (subsurface water)	to supp	ort active r	n bed is dev hyporheic lif encrete or be	e. Terrestri	al fauna may	hough subst be commor	rate may rem on the strea	nain wet enough m bed. This state
	(uiy)	support	active nyp	orheic life (a	although de	essication-res	sistent life st	te (if present) tages may be y soils above	is too dry to present). Soil the banks.

Hobo Meter Depth (m):

Take a photo to document conditions (at transects A, F, and K, if possible).

Notes:

The second secon

% o	freach	scades Rapids Riffle	es Runs	Glides	Pools	Dry	
Land Street	e (check one)	state that most closely mar Description, indicators	tches the domin	ant state of the	ne reach:		
	Hyperrheic (flooding)	Water may be above bar particles may occur.	nks and turbid o	r carrying sus	pended parti	icles. Movement of s	treambed
]	Eurheic (baseflow)	Water always below ban most of the stream bed. runs, glides). Gravels will	Many different	flow microhal	oitats may be		
]	Oligorheic (limited flow)	Discharge is low but suff Surface water is more or					all rivule
	Arheic (disconnected pools)	Discharge is close to zero disconnected. This state concrete channels.					
	Hyporehic (subsurface water)	Most of the stream bed in to support active hyporh may not exist in concrete	eic life. Terrestr	ial fauna may			
/	Edaphic (dry)	The entire stream bed is support active hyporheic moisture in the streamber	life (although o	lessication-re	sistent life s	tages may be preser	nt). Soil
bo	Meter Depth (n);					
(e i	photo to docur	ent conditions (at transec	ets A, F, and K, if	f possible).			
tes							

Rincon/Ventura River ... Jata Logger Field Sheet

Site ID:	twol	,-35/		4	Field Crew:	PD Ten	vis J	W	_
Deploymen	t / Mid R	Retrieval			Flow (circle o	ne): Flowing	/Ponded/	Dry	
						YSI	Measurem	ents	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinity (ppt)
11.23.20	0940	ON: Some		US:	188	0.65	7.51	42724,0	27.537
Location De	scription:	Musky S							
Comments:									

Rincon/Ventura River ... Jata Logger Field Sheet

Site ID:	TMPZ-	257	**		Field Crew:) im M	Pets	he Down	
Deploymen	t / Mld/R	etrieval			Flow (circle o	ne): Flowing	/Ponded/	Dry	
Date	Time	Coordinates	Depth (cm)	Photos /	Water Temp (°C)	Dissolved	Measurem pH	Conductivity (µs)	Salinity (ppt)
11.15.21	1547	.ºN:		US: V	18.3	12.58	8.02	19,605	11.07
Comments:		Readings of	58 2 dgg	2 6 ¢ 1	Bridge				

Rincon/Ventura River ... _ Jata Logger Field Sheet

Site ID:		Retrieval			Field Crew: Rowing/ Ponded/ Dry				
						YSI	Measureme	nts	
Date	Time	Coordinates	Depth (cm)		Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinity (ppt)
11.5.4	0943	°N:		US:	16.3	6.54	7.72	46583,0	30,30
Location Des	scription:								
Comments:									
		potania de vida de la composición del composición de la composición del composición de la composición							

Rincon/Ventura River ... Jata Logger Field Sheet

Deploymen	t / Mld / I	Retrieval			Flow (circle one): Flowing/ Ponded Dry YSI Measurements				
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (µs)	Salinit
11-4.21	1230	°N:	_	US:					
Location De	7 0	Oonz bz k	bouz du	DS:					
	7 0		sour du						
	7 0		bour du						
ocation De	scription:	Donz bz k							
Location De	scription:								

Rincon/Ventura River Jata Logger Field Sheet

Deploymen	. / Mid /	Retrieval			Flow (circle one): Flowing/ Ponded/Dry YSI Measurements					
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	леasurem pH	Conductivity (µs)	Salinity (ppt)	
11 4 11	10111	°N:		us:						
// · · · · · · · · · · · Location De		Bonz Dry		DS:V_						
		°W:		1/						
		°W:		1/						
	scription:	°W:		1/						

Ventura River Algae TMDL Field Di Sheet (Reaches 1—4) - Page 1 of 1

Event ID (Month Year): Dec るのと	
Site ID: TMDL-R3	
Date/Time: 18/8/21 9:12	
Crew Members: SH. SP. SC	
Latitude/Longitude: 34.345458/-119. 2994	Ko
Flow (circle one): Flowing / Ponded / Dry	
Wind Strength:	
Calm / Light Breeze / Moderate Breeze / Strong Breeze /	Windy
Wind Direction: Blowing (circle one) From / To	
Photos (check): Upstream Downstream	`
Notes (e.g. homeless, wildlife, horses, swimming/	recreation,
discharge comments, etc.) :	
1-7-5-	
	-
	\rightarrow
	*
January—December Monthly In Situ Measuremen	ts:
pH: 860 pH units EC: μS/cm	ts:
pH: <u>860</u> pH units EC: μS/cm DO: <u>9.42</u> mg/L SC: <u>120</u> μS/cm	ts:
pH: 8 60 pH units EC: μS/cm DO: 9.42 mg/L SC: 120 μS/cm DO: % Salinity: 0.60 ppt	ts:
pH: 860 pH units EC: μ S/cm DO: 9.42 mg/L SC: 1201 μ S/cm DO: 9.42 % Salinity: 0.60 ppt Water Temp: 12.8 °C	
pH: 8 60 pH units EC: μS/cm DO: 9.42 mg/L SC: 120 μS/cm DO: % Salinity: 0.60 ppt	
pH: 860 pH units EC: μ S/cm DO: 9.42 mg/L SC: 1201 μ S/cm DO: 9.42 % Salinity: 0.60 ppt Water Temp: 12.8 °C	
pH: 860 pH units EC: μ S/cm DO: 9.42 mg/L SC: 1201 μ S/cm DO: 9.42 % Salinity: 0.60 ppt Water Temp: 12.8 °C	
pH: 860 pH units EC:µS/cm DO:% Salinity:pS/cm DO:% Salinity:ppt Water Temp: C Flow (from discharge measurement): cf Samples Collected (check box) January—December Monthly Water:	s
pH: 860 pH units EC: µS/cm DO: 9.42 mg/L SC: 120 µS/cm DO: % Salinity: 0.60 ppt Water Temp: 12 8 °C Flow (from discharge measurement): cf Samples Collected (check box) January—December Monthly Water: Total Phosphorus , Total Nitrogen, and Nitrate + Nitrogen, and Nitrate	s
pH: 860 pH units EC: µS/cm DO: 9.42 mg/L SC: 120 µS/cm DO: % Salinity: ppt Water Temp: 12 8 °C Flow (from discharge measurement): cf Samples Collected (check box) January—December Monthly Water: Total Phosphorus , Total Nitrogen, and Nitrate + Nit Nitrogen (unfiltered):	s
pH: 860 pH units EC: µS/cm DO: 9.42 mg/L SC: 120 µS/cm DO: % Salinity: 0.60 ppt Water Temp: 12	trite as
pH: 860 pH units EC: µS/cm DO: 9.42 mg/L SC: 120 µS/cm DO: % Salinity: 0.60 ppt Water Temp: 12 8 °C Flow (from discharge measurement): cf Samples Collected (check box) January—December Monthly Water: Total Phosphorus , Total Nitrogen, and Nitrate + Nit Nitrogen (unfiltered):	trite as

Discharge Measurement

1st Measurement = left bank (looking downstream)

Vel	locity Area M	lethod (pref	erred) /
No.	Distance from Left Bank (ft)	Depth (ft)	Velocity (ft/sec)
1		/	
2			
3			
4			- vi
5		/	
6	1		(= 1)
7	1	1	
8	1	0	
9		1	3
10	Name of the state	2	
11			
12			
13			
14		2	
15		0	
16			
17			
18			
19			
20	- 12		

Buoya (Use only if velo	ant Object city area m		ossible)					
	Float 1 Float 2 Float 3							
Distance (ft)		p. A. Carlotte						
Float Time (sec)		1						
Float Re	ach Cross	Section (ft)					
	Upper Section	Middle Section	Lower Section					
Width								
Depth 1/								
Depth 2								
Depth 3								
/Depth 4								
Depth 5								

May-September: Algae Collection for Chlorophyll a
Reach Length (150 m if wetted width ≤ 10 m; 250 m
if wetted width > 10 m):

Quantity

Collection Device

(sum # transects per Device)	
Rubber Delimiter (Area=12,6cm²)	
PVC Delimiter (Area=12.6cm²)	
Syringe Scrubber (Area=5.3cm²)	
Other (Area=	
Number of Transects Sampled (0-11)	
Composite Volume (mL)	
Chlorophyll a Volume	1
(use GF/F filter, 25 mL preferred volume)	1.8

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

		1st		charge Meas nt = left bank	surement : (looking downstream)			
Event ID (Month Year): Dec 2011 Site ID: TMDL- Bプ	Velocity Area Method (preferred)			Buoy	Buoyant Object Method (Use only if velocity area method not possible)			
Date/Time: 17/8/21 9:53		Distance		Velocity	(Use only ii vel	Float 1	Float 2	Float 3
Crew Members: SH SP SC	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)	1		
Latitude/Longitude: 34.239414/-119.297220	1	Dank (ity		/	Float Time (sec)			
Flow (circle one): Flowing / Ponded / Dry			/		Float Reach Cross Section (ft)			
Wind Strength: Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	2	-	/		A Property	Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3					Section	Section	Section
Photos (check): Downstream	4				Width	/ \		
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5				Depth 1			
discharge comments, etc.) :	6				Depth 2			
			-		Depth 3			
	7		-		Depth 4			Mary II
	8	V			Depth 5			1
January—December Monthly In Situ Measurements:	9	X						_/
pH: ¬μS/cm	10	رسي		1	May—September:			/
DO: >.45 mg/L SC: 1>>5 μS/cm	11				Reach Length (150 m if wetted width ≤ 10 m; if wetted width > 10 m):) m; 250 m
DO: % Salinity: <u>O 64</u> ppt	-						-/	
Water Temp: 15.6°C Flow (from discharge measurement):cfs	12				Collection Device		Quantity	
How (non discharge measurement).	13	2			(sum # trans		-/-	
	14	5			Rubber Delimiter (A	Area=12.6c	m ²)	
Samples Collected (check box)	15			1.8	PVC Delimiter (Area	a=12.6cm ³)		
January—December Monthly Water:	16		1		Syringe Scrubber (A	Area=5.3cm	2)	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	-	-	-		Other (Area=	/)	
Nitrogen (unfiltered):	17				Number of Transec	Campled	(0.11)	
Dissolved Phosphorus and Nitrogen (field filtered):	18			- di-	/	1	(0-11)	
May—September Dry Season Monthly Algae:	19	1			Composite Volume	(mL)		
Chlorophyll a (filters—algae):	20				Chlorophyll a Volum			
			_		use GF/F filter, 25	mL preferr	ed volume)	

Ventura River Algae TMDL Field Data Sheet (Estuary) - Page 1 of 1

Ventura River Algae TMDL—Estuary Details

Site ID: TMDL-Est Event ID (Month Year): Dec シンシ	Date/Time: 12/8/21 11:29
Crew Members: SH, SP, SC	
Weather (circle one): Clear/ Partly Cloudy / Overcast / Rainy / Foggy	Ocean Inlet (circle one): Open / Restricted / Closed
Direction of Tide: Ebb / Flood / Slack N/A	Time of Low Tide: 19 36 Time of High Tide: 11.43
Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze /	Windy / Strong Wind Wind Direction: Blowing From / To
Notes (e.g. homeless, wildlife, dogs, swimming/recreation):) hirels

Monthly (Jan—Dec): pH:	μS/cm	Water Temp: _	<u> 14.4</u> °с
Photos: Oceanward Dandward			
Sample Latitude: 34.2-74587			
Sample Longitude - 119,302456			
*			

Water Samples Collected (check	k box)			
[Collect at Floating Macroalgae	Quadrat 1,	Transec	<u>:t 1]</u>	
Monthly Water (Jan—Dec):				
Nitrogen, total and dissolved:	D		1:1	
Phosphorus, total and dissolved:	D/		, , ,	
Nitrate + Nitrite as Nitrogen:	P			
. ε	0			
				*

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

Event ID (Month Year): Dec つつい	1st Measurement = left bank (looking downstream)								
Site ID: TMDL - BI	Ve	locity Area N	lethod (pref	erred)	Buoyant Object Method (Use only if velocity area method not possible)				
Date/Time: 12/8/21 10 48 Crew Members: SH SP SC		Distance		Velocity	1	Float 1	Float 2	Float 3	
Crew Members:	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)		/		
Latitude/Longitude: 34.28 1983 /-119.309034	1				Float Time (sec)	- 0	/		
Flow (circle one): Flowing / Ponded / Dry	-				Float Re				
Wind Strength: Calm / light Breeze / Moderate Breeze / Strong Breeze / Windy	2				IC .	Upper	Middle	Lower	
Wind Direction: Blowing (circle one) From / To	3					Section	Section	Section	
Photos (check): Upstream to Downstream	4				Width		1		
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5				Depth 1		-		
discharge comments, etc.) :	6			4	Depth 2				
-	_				Depth 3				
	7				Depth 4				
	8		1		Depth 5				
January—December Monthly In Situ Measurements:	9	00	/		Беригэ		la la		
pH: 7-86 pH units EC:µS/cm	10	10	- 1		May-September:	Algae Colle	ction for C	nlorophyll <i>a</i>	
DO: <u>8.35</u> mg/L SC: <u>1663</u> μS/cm		1/2			Reach Length (150 m if wetted width ≤ 10 m; 25			0 m; 250 m	
DO:% Salinity: O.S4 ppt	11	101			if wetted width > 10) m):		/-	
Water Temp:CC Flow (from discharge measurement): cfs	12	-		4		on Device		Quantity	
Tiow (Holli discharge measurement).	13				(sum # transe	ects per De	vice\		
	14				Rubber Delimiter (A	rea=12.6cm	\hat{n}^2)		
Samples Collected (check box)	15	(7)			PVC Delimiter (Area	=12,6cm ²)			
January—December Monthly Water:					Syringe Scrubber (A	rea=5 3cm ²	1		
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16					cu-s.sem			
Nitrogen (unfiltered):	17		1		Other (Area=		X		
Dissolved Phosphorus and Nitrogen (field filtered): □	18				Number of Transect	s Sampled	(0-11)		
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)		_	
Chlorophyll a (filters—algae):	20				Chlorophyll a Volum	Chlorophyll a Volume			
					(use GF/F filter, 25 r	nL preferre	d volume)		

Site: TMDL - C	Lat: 34.34196> Long: 119.286446 Date: 12/8/2/
Observer(s): SH	SP, SC
Flow habitats: Estima Ode (2007). Total mu	te the percent cover of each habitat type <i>across the entire reach,</i> to within 5%. Definitions follow st equal 100%.
Cas	scades Rapids Riffles Runs Glides Pools Dry
% of reach	100
Calaat tha budualasia	
	state that most closely matches the dominant state of the reach:
State (check one) Hyperrheic	Description, indicators Water may be above banks and turbid or carrying suspended particles. Movement of streambed
(flooding)	particles may occur.
☐ Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.
Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Hobo Meter Depth (n	n):
Take a photo to docur	ment conditions (at transects A, F, and K, if possible).
Notes:	
	H [*]

Assessment of hydrologic states

Site: TMDL-SA	Lat: 34.3806文 Long: 119.30文46社 Date: 12181社
Observer(s):	3.Sc
Flow habitats: Estima Ode (2007). Total mus	te the percent cover of each habitat type <i>across the entire reach</i> , to within 5%. Definitions follow st equal 100%.
Cas	scades Rapids Riffles Runs Glides Pools Dry
% of reach	100
Select the hydrologic	state that most closely matches the dominant state of the reach:
State (check one)	Description, indicators
☐ Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
☐ Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.
Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Hobo Meter Depth (m	n):
Take a photo to docur	nent conditions (at transects A, F, and K, if possible).
Notes:	

Assessment of hydrologic states

Site:	TMDL- RU	Lat:34.379 x 84 Long: -119.308518 Date: 12/8/24					
Obse	erver(s): 3H, 3	SP SC					
	Flow habitats: Estimate the percent cover of each habitat type across the entire reach, to within 5%. Definitions follow Ode (2007). Total must equal 100%.						
	Cas	scades Rapids Riffles Runs Glides Pools Dry					
% of	reach	100					
Selec	t the hydrologic	state that most closely matches the dominant state of the reach:					
State	(check one)	Description, indicators					
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.					
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.					
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.					
	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.					
	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels					
	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.					
Hobo	Meter Depth (m	n):					
Take	a photo to docur	ment conditions (at transects A, F, and K, if possible).					
Notes	5:						

Ventura River Algae TMDL Event Details

Photos Taken: Upstream / Downstream		Time:	e iD:
			ıçes:
			:(gniwofi fi) belgmes ton nose
	(sto		W Status : Dry Ponded / Flowing
Photos Taken; Upstream) (Downstream)		Time: 8 SI	A2-Jan_:019
			res:
	cts)	(באוווופופט רוטאי	w Status : (Dry)/ Ponded / Flowing ason not sampled (if flowing):
Photos Taken: Upstream / Downstream	(230	Time: 8: US	49-70VT:01=
			;sə;
	- Y-		:(gniwoff fi) baldmes fon nose
	(sto		Briwola \ Ponded \ Flowing
Photos Taken: Upstream Downstream		Of 3 :smiT	1) - J(MI:01=
			SAMPLED TMDL SITES
			:es:
bhotos Taken : Upstream / Downstream	cfs)	(Estimated Flow:	w Status: Dry / Ponded / Flowing
			:eti2 nottevneadO lenottib
			tes:
Photos Taken: Upstream / Downstream	(s³ɔ		ntura River at Casitas Vista Roa W Status: Dry / Ponded / Flowing
			;sə;
bhotos Taken: Upstream / Downstream	cts)	(Estimated Flow:	ntura River at Santa Ana Blvd Briwol7 \ Ponded \ Floring
			;sə;
Photos Taken: Upstream / Downstream	(sto		ntura River at Highway 150 (Bal w Status : Dry / Ponded / Flowing
		T	WOJA REVIRE (RIVER FLOW
10	Ion as we see		: sət
		s with ≥0.1" rain and	
		y \ Ονercast \ Showe L" rain per day for the	sather (circle): (Clear / Partly Cloud ent Type (check): # Ory (<0
			Wembers: CH SO W
			7 7 1 1 9
Date: 12/8/2	-	Ten	ent ID (Month Year):

(sto____

Notes:

Reason not sampled (if flowing):

Flow Status: Dry / Ponded / Flowing (Estimated Flow:

Ventura River Algae TMDL Field D Sheet (Reaches 1—4) - Page 1 of 1

	1
	1 3
	112
	100
	1.0

Discharge Measurement

1st Measurement = left bank (looking downstream) Event ID (Month Year): Jan 2022

No.	Distance from Left Bank (ft)	Depth (ft)	Velocity (ft/sec)
1			
2			
3			
4	ON		
5			
6	NNA	XX	
7	1100		
8			
9			
10		+	
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

Buoyant Object Method (U) only if velocity area method not possible)							
Float 1 Float 2 Float 3							
Distance (t)	Distance (ft)						
Float Time (sec)							
Float Ro	each Cross	Section (ft)	1				
Upper Middle Lower Section Section Section							
Width	X						
Depth 1							
Depth 2							
Depth 3		1					
Depth 4							
Depth 5							

May—September: Algae Collection fo	or Chlorophyll a
Reach Length (150 m if wetted width	≤ 10 m; 250 m
if wetted width > 10 m):	
Collection Device	Quantity

(sum # transects per Device)	Quantity
Rubber Delimiter (Area=12.6cm²)	
PVC Delimiter (Area=12.6cm²)	
Syringe Scrubber (Area=5 3cm²)	
Other (Area=)	
Number of Transects Sampled (0.11)	
Composite Volume (mL)	
Chlorophyll a Volume	
(use GF/F filter, 25 mL preferred volume)	

<u>Janı</u>	uary—Dec	ember Mo	nthly	In Situ	Measurements:
pH:	8.04	pH units	EC:	_	uS/cm

discharge comments, etc.):

DO: 9 93 mg/L SC: 1234 µS/cm

DO: ______ % Salinity: O.62 ppt

Water Temp: 12.5°C

Site ID: TMDL - RZ

Crew Members: SH SC

Photos (check): Upstream

Wind Strength:

Date/Time: 1/12/22 10:27

Flow (circle one): Flowing / Ponded / Dry

Latitude/Longitude: 34 339347/-114 29230

Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From / To

Notes (e.g. homeless, wildlife, horses, swimming/recreation,

downstream

Flow (from discharge measurement): - cfs

Samples Collected (check box)

January—December Monthly Water:

Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered):

Dissolved Phosphorus and Nitrogen (field filtered):

May—September Dry Season Monthly Algae:

Chlorophyll a (filters—algae):

1DL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Ventura River Alg	gae
Event ID (Month Year): 丁ム みょうえ	
Site ID: TMOL - RI	
Date/Time: 1/12/22 11:31	
Crew Members: SH SC	
The state of the s	
Latitude/Longitude: 34.282015/-119.308524	1
Flow (circle one): Flowing / Ronded / Dry	
Wind Strength:	
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	
Wind Direction: Blowing (circle one) From / To	
Photos (check): Depstream Mownstream	
Notes (e.g. homeless, wildlife, horses, swimming/recreation	on,
discharge comments, etc.):	=
	Ξ,
	=
	_
January—December Monthly In Situ Measurements:	
pH: μS/cm	
DO: <u>10 18</u> mg/L SC: <u>1669</u> μS/cm	
DO: % Salinity: &Sppt	
Water Temp: \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

.aim / Light Breez	e / Moderate Breeze / Strong Breeze / Windy
Wind Direction:	Blowing (circle one) From / To
Photos (check):	pstream Mownstream
Notes (e.g. hom	eless, wildlife, horses, swimming/recreati
discharge comm	ents, etc.) :
January—Decer	nber Monthly In Situ Measurements:
	H units EC: μS/cm
	ng/L SC: 1669 μS/cm
	Salinity: 0 85 ppt
Water Temp: \	
· —	narge measurement):cfs
riow (from discr	ange measurementy.
	1/1 11 1
Samples Collect	an ichack hovi
Samples Collect	
January—Decen	nber Monthly Water:
January—Decen Total Phosphoru	nber Monthly Water: is , Total Nitrogen, and Nitrate + Nitrite as
January—Decen Total Phosphoru Nitrogen (unfilte	nber Monthly Water: as , Total Nitrogen, and Nitrate + Nitrite as ered):
January—Decen Total Phosphoru Nitrogen (unfilte	nber Monthly Water: is , Total Nitrogen, and Nitrate + Nitrite as
January—Decen Total Phosphoru Nitrogen (unfilte Dissolved Phosp	nber Monthly Water: as , Total Nitrogen, and Nitrate + Nitrite as ered):

Discharge Measurement

1st Measurement = left bank (looking downstream)

Velocity Area Method (preferred)					
No.	Distance from Left Bank (ft)	Depth (ft)	Velocity (ft/sec)		
1					
2	,				
3					
4	V		1		
5	MA-	Val			
6	11,0	YCI			
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

Buoy (Use only if velo	ant Object ocity area m		ossible)			
	Float 1 Float 2 Floa					
Distance (ft)						
Float Time (sec)			,			
Float R	ach Cross	Section (ft)	/			
	Upper Section	Middle Section	Lower Section			
Width	X					
Depth 1						
Depth 2						
Depth 3						
Depth 4		7	1			
Depth 5						

May—September: Algae Collection for Ch Reach Length (150 m if wetted width ≤ 10 if wetted width > 10 m):	1
Collection Device	Quantity
(sum # transects per Device)	
Rubber Delimiter (Area=12.6cm²)	
PVC Delimiter (Area=12.6cm²)	16
Syringe Scrubber (Area=5.3cm²)	
Other (Area= /)	
Number of Transects Sampled (0-11)	
Composite Volume (mL)	
Chlorophyll a Volume	
(use GF/F filter, 25 mL preferred volume)	

Ventura River Algae TMDL Field D: Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

1st Measurement =	eleft bank	(looking	downstream)
-------------------	------------	----------	-------------

Event ID (Month Year): 550 2022				looking downstream)				
TAGE I	Ve	locity Area N	lethod (prefe	erred)	Buoyant Object Method (Use only if velocity area method not possible)			
Date/Time: 117177 8:46 Crew Members: 5H SC	1	Distance	1.403	Velocity		Float 1	Float 2	Float 3
	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)			
Latitude/Longitude: 34.3 \ 0811/-119. 30 \ 24	1				Float Time (sec)			
Flow (circle one): Flowing / Ponded / Dry					Float Re	each Cross	Section (ft)	
Wind Strength: Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	2					Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3	100				Section	Section	Section
Photos (check): Downstream	4	01			Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5				Depth 1			1
discharge comments, etc.):	-		00		Depth/2	1		
	6	100	X	4			1	
	7	1116			Depth 3			
	8				Depth 4			
		1		-	Depth 5			
January—December Monthly In Situ Measurements:	9							
pH: ¬¬¬¬ μS/cm	10				May—September:			
DO: <u>\υ.Ο\</u> mg/L SC: <u>\5 lb</u> μS/cm	11				Reach Length (150			u m; 250 m
DO:% Salinity: O · 77 ppt					if wetted width > 1	J m):		-
Water Temp: <u>♥ . ७</u> °C	12				Collect	ion Device		Quantity
Flow (from discharge measurement): cfs	13				(sum # trans	ects per De	vice)	
	14				Rubber Delimiter	Area=12.6c	m²)	1
Samples Collected (check box)	15				PVC Delimiter (Are	=12.6cm²)		
January—December Monthly Water:	-				Syringe Scrubber (A	rea 5.3cm	12)	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16					1	· \	
Nitrogen (unfiltered):	17				Other (Area			
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transec	ts Sampled	(0-11)	
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)		
Chlorophyll a (filters—algae):	20				Chiprophyll a Volu	me		
		1			(use GF/F filter, 25	mL preferr	ed volume)	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

1st Measurement = left bank (looking downstream)

Event ID (Month Year): ゴマハ マーシュー
Site ID: TMDL - R3
Date/Time: 1/12/22 9:38
Crew Members: SH SC
Latitude/Longitude: 34 . 345501/-119 . 2-993>8
Flow (circle one): Flowing / Ponded / Dry
Wind Strength:
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy
Wind Direction: Blowing (circle one) From / To NW/ SE
Photos (check): Dypstream Downstream
Notes (e.g. homeless, wildlife, horses, swimming/recreation,
discharge comments, etc.) :
January—December Monthly In Situ Measurements:
pH: $\geq .$ C1 \approx pH units EC: μ S/cm
DO: 10.1 2-mg/L SC: 1196 μS/cm
DO: % Salinity: O 60 ppt
Water Temp: <u>\\⋅</u> '≻ °C
Flow (from discharge measurement): cfs
Samples Collected (check box)
January—December Monthly Water:
Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered):
Dissolved Phosphorus and Nitrogen (field filtered):
oissoived Phosphorus and Microgen (held intered).
May—September Dry Season Monthly Algae:
May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): □

Velocity Area Method (preferred) Distance Velocity from Left | Depth (ft) No. (ft/sec) Bank (ft)

Buoy (Use only if vel	ant Object ocity area mo		ossible)			
	Float 1 Float 2 Float					
Distance (ft)						
Float Time (sec)		3				
Float	each Cross	Section (ft)				
	Upper Section	Middle Section	Lower Section			
Width	X					
Depth 1						
Depth 2						
Depth 3						
Depth 4						
Depth 5						

May—September: Algae Collection for Ch	lorophyll a			
Reach Length (150 m if wetted width ≤ 10 m; 250 m				
if wetted width > 10 m):				
Collection Device (sum # transects per Device)	Quantity			
Rubber Delimiter (Area=12.6cm²)				
PVC Delimiter (Area=12.6cm²)				
Syringe Scrubber (Area=5.3cm²)	-			
Other (Area= /)	-01			
Number of Transects Sampled (0-11)				
Composite Volume (mL)				
Chlorophyll a Volume				
(use GF/F filter, 25 mL preferred volume)				

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Event ID (Month Year): ブらっ シッシュ		1st		charge Mea nt = left bank	surement (looking downstream	-		
Site ID: TMOL- RY	Velocity Area Method (preferred)				ant Object	Method		
Date/Time: 1/12/22 8:11	-			(Use only if velocity area method not possible)				
Crew Members: SC	No.	Distance from Left	Depth (ft)	Velocity		Float 1	Float 2	Float 3
		Bank (ft)	' ' '	(ft/sec)	Distance (ft)	1		
Latitude/Longitude: 34379842/-119 308488	1				Float Time (sec)		/	
Flow (circle one): Flowing Ponded / Dry					Float R	each Cross	Section (ft)	
Wind Strength: Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	2					/		
Wind Direction: Blowing (circle one) From / To	3					Upper Section	Middle Section	Lower Section
Photos (check): Dypstream Dypownstream	4				Width	X		
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5 /				Depth 1			
discharge comments, etc.) :	6	<u> </u>			Depth 2			
		1 1 1	0 0		Depth 3			
	7	WO	X		Depth 4		1	
	8			G	Depth 5		1	
January—December Monthly In Situ Measurements:	9				Depth 3			
pH: ¬¬¬ μS/cm	10				May—September:	Algae Colle	ction for C	hlorophyll (
DO: <u>6.87</u> mg/L SC: <u>994</u> μS/cm			-		Reach Length (150			0 m; 250 m
DO: % Salinity: O . 49 ppt	11				if wetted width > 10) m):		/
Water Temp: <u>راع ک</u> ۲	12				Collecti	on Device		Quantity
Flow (from discharge measurement): cfs	13				(sum # trans	ects per De	vice)	
	14				Rubber Delimiter (A	rea=12.66	m²)	
Samples Collected (check box)	15				PVC Delimiter (Area	=12,6cm ²)		
January—December Monthly Water:	13				Surings Saruhhan (- L	2,	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16				Syringe Scrubber (A	rea=5.3cm)	-
Nitrogen (unfiltered):	17				Other (Area=	1)	
Dissolved Phosphorus and Nitrogen (field filtered): d	18		1 1		Number of Transec	ts Sampled	(0-11)	
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)		
Chlorophyll a (filters—algae):	20				Chlorophyll a Volun	ne \		
		-			(use GF/F filter, 25	mL preferre	d volume)	

Ventura River Algae TMDL Field Da Sheet (Reaches 1—4) - Page 1 of 1

1st Measurement = left bank (looking downstream)

Event ID (Ivionth Year):				
Site ID: TMDL - CL	Vel	ocity Area M	ethod (prefe	erred)
Date/Time: 1/12/22 >:13 Crew Members: 5H, SC	No.	Distance from Left Bank (ft)	Depth (ft)	Velocity (ft/sec)
Latitude/Longitude: 34 34 1902/-119.286358	1			
Flow (circle one): Flowing / Ponded / Dry Wind Strength:	2			
Calm /,Light Breeze / Moderate Breeze / Strong Breeze / Windy	3			
Wind Direction: Blowing (circle one) From / To	3			
Photos (check): Dopstream Downstream	4			
Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.) :	5			
discharge comments, etc./	6			
	7	10		
	8 (00	/
January—December Monthly In Situ Measurements:	9	IN	X	D
pH: β. λδ pH units EC: μS/cm	10	1100		
DO: \3 47-mg/L SC: 5206 μS/cm DO:% Salinity: 2.78 ppt	11			
Water Temp: $\begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\li$	12			
Flow (from discharge measurement): cfs				
	13	-		
	14			
Samples Collected (check box)	15			
January—December Monthly Water:	16			
Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as	17			

18

19

20

Dissolved Phosphorus and Nitrogen (field filtered):

May—September Dry Season Monthly Algae:

Chlorophyll a (filters—algae):

Buoyant Object Method (Use only if velocity area method not possible)						
	Float 1 Float 2 Float 3					
Distance (ft)						
Float Time (sec)						
Float Ro	each Cross	Section (ft)				
	Upper Section	Middle Section	Lower Section			
Width						
Depth 1						
Depth 2						
Depth 3						
Depth 4						
Depth 5						

May—September: Algae Collection for Chlorophyll a Reach Length (150 m if wetted width ≤ 10 m; 250 m if wetted width > 10 m):		
Collection Device (sum # transects per Device)	Quantity	
Rubber Delimiter (Area=12.6cm²)		
PVC Delimiter (Area=12,6cm²)		
Syringe Scrubber (Area=5.3cm²)		
Other (Area=)		
Number of Transects Sampled (0-11)		
Composite Volume (mL)		
Chlorophyll <i>a</i> Volume (use GF/F filter, 25 mL preferred volume)		

Ventura River Algae TMDL Field Data Sheet (Reaches 1-4) - Page 1 of 1

Event ID (Month Year):_____ Site ID: _____ Date/Time: _____ Crew Members: _____ Latitude/Longitude: _____ Flow (circle one): Flowing / Ponded / Dry Wind Strength: Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From / To Photos (check): Upstream Downstream Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.) :_____ January—December Monthly In Situ Measurements: pH: _____ pH units EC: _____ μS/cm DO: ______ % Salinity: _____ ppt Water Temp: °C Flow (from discharge measurement): _____ cfs Samples Collected (check box) January—December Monthly Water: Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered): May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae):

Discharge Measurement

1st Measurement = left bank (looking downstream)

Ve	locity Area M	lethod (prefe	erred)
No.	Distance from Left Bank (ft)	Depth (ft)	Velocity (ft/sec)
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

Buoy (Use only if vel	vant Object ocity area m		ossible)
	Float 1	Float 2	Float 3
Distance (ft)			
Float Time (sec)			
Float Ro	each Cross	Section (ft	
	Upper Section	Middle Section	Lower Section
Width			
Depth 1			
Depth 2			
Depth 3			
Depth 4			
Depth 5			

May—September: Algae Collection for Chlorophyll a Reach Length (150 m if wetted width ≤ 10 m; 250 m if wetted width > 10 m): _____

Collection Device (sum # transects per Device)	Quantity
Rubber Delimiter (Area=12.6cm²)	
PVC Delimiter (Area=12.6cm²)	
Syringe Scrubber (Area=5.3cm²)	
Other (Area=)	
Number of Transects Sampled (0-11)	
Composite Volume (mL)	
Chlorophyll a Volume (use GF/F filter, 25 mL preferred volume)	

Ventura River Algae TMDL Field Data Sheet (Estuary) - Page 1 of 1

Ventura River Algae TMDL—Estuary Details

Site ID: TMDL-Est Event ID (Month Year): フェーン コンタン Crew Members: SH 、SC	Date/Time: 1/12/22 12:19
Weather (circle one): Clear / Partly Cloudy / Overcast / Rainy / Foggy Ocean In	nlet (circle one): Open / Restricted / Closed
	Low Tide: 15 10 Time of High Tide: 237
Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze / Windy / Stro	ong Wind Wind Direction: Blowing From / To
Notes (e.g. homeless, wildlife, dogs, swimming/recreation):	
In Situ Measurements (Measure at Floating Macroalgae Quadrat 1, Transect 1) Monthly (Jan—Dec): pH: δ 3 pH units EC: μS/cm DO: 10 17 mg/L SC: 5536 μS/cm DO:% Salinity: 3.0 ppt	Water Samples Collected (check box) [Collect at Floating Macroalgae Quadrat 1, Transect 1] Monthly Water (Jan—Dec): Nitrogen, total and dissolved:
Photos: Doceanward & Landward	Nitrate + Nitrite as Nitrogen:
Sample Latitude: 34,2 745 ×4	· · · ·
Sample Longitude 119.30 x 203	
	and the same of th

From: Aquatic Bioassay Phone: (805) 643-5621 To: Company: PHYSIS and Consulting Labs. Fax: (805) 643-2930 Address: 1904 E Wright Circle 29 N. Olive St. Project ID: Ventura River Anaheim, CA 92806 Ventura, CA 93001 AlgaeTMDL Phone: (714) 335-5793 **ANALYSIS** Dissolved Phosphorous, Field Filtered (SM 4500-P E) Nitrate / Nitrite, Fi ... Filtered (SM 4500 NO3 Total TKN (EPA 351.2) Dissolved TKN (EPA 351.2) Grin 4500 NUZ B) Total Phosphr (SM 45r . c) Sample I.D. No. Sample Date Volume/ Û Time Matrix Reps No. Comments 3-250 mL, pl: TMDL-CL 02/04/2022 07:30 2-250 mL, gl. 3-250 mL, pl; 02/09 HOUZ TMDL-R4 08:00 Water 2-250 mL, gl 1 3-250 mL, pl; 08:30 TMDL-SA 02/09/2022 X 2-250 mL, gl Water X X \star 3-250 mL, pl; or 104 pour TMDL-R3 09:30 X X Water 2-250 mL, gl X 3-250 mL, pl; 0409/2002 10115 TMDL-R2 2-250 mL, gl. Water X 3-250 mL, pl; TMDL-R1 04/09/2022 11:00 X X Water 2-250 mL, gl. X 3-250 mL, pl. 04/09/202 11:30 TMDL-Est Water 2-250 mL, gl. X X X X Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H₂SO₄; Emε report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.co RELINQUISHED BY REL. IQUISHED BY Name: Shelby Relasik Name: Salforn Humger RECEIVED BY Name: Shelly Palas; k Name: Signature Signature: Salah Signature: Signature: Date: 02/09/2012 Time: 1215 Date: ンイイリント Time: 12:15 Date: 1401/2022 Time: 1246 Date: Time:

Ventura River Algae TMDL Field D

Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

1st Measurement = left bank (looking downstream)

Event ID (Month Year): Fobrary 2022		1511	vieasuremer	it = ieit bank i	looking downstream)			
Site ID: TMDL-CL	Vel	ocity Area M	lethod (pref	erred) /	Buoy (Use only if velo	ant Object		nssihlal
Date/Time: 2/9/2012 7:30		Distance		/	100000	Float 1	Float 2	Float 3
Crew Members: 5P, 5C, 55	No	from Left	Depth (ft)	Velocity		Float 1	FIOAL Z	Float 3
Stephanir Stater		Bank (ft)		(ft/sec)	Distance (ft)		/	
Latitude/Longitude: 34-344112 -11/186452	1				Float Time (sec)		/	
Flow (circle one): Flowing / Ponded / Dry		1			Float Re	each Cross	Section (ft	
Wind Strength:	2				Tiout it	-	-	
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	3		/				Middle	Lower
Wind Direction: Blowing (circle one) From / To		1	1	2		Section	Section	Section
Photos (check): Upstream Downstream	4			7	Width	B. Carrier		
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5				Depth 1			
discharge comments, etc.):	6	1		2	Depth 2			
	0		1	3	Depth 3			
	7		Y	7				
	8			9	Pepth 4			
	-	2		1	Depth 5			,
January—December Monthly In Situ Measurements:	9	Mr.				A Table		-
pH: S, 47 pH units EC: µS/cm	10	1			May—September:			/
DO: <u>1,91</u> mg/L SC: <u>1995</u> μS/cm	11	1	1		Reach Length (150			0 m; 250 m
DO:% Salinity: X-C7_ ppt	11				if wetted width > 10) m):		_
Water Temp: 5 5 °C	12				Collecti	on Device	/	Quantity
Flow (from discharge measurement):efs	13				(sum # trans	ects per De	evice)	
		1			Rubber Delimiter (A	rea=12.6c	m²)	1
	14	1		1		1/		
Samples Collected (check box)	15	1			PVC Delimiter (Area	a=12.6cm*)	0	
January—December Monthly Water:	16			1	Syringe Scrubber	rea=5.3cm	1 ²)	
Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as	10/				Other (Area		1.	
Nitrogen (unfiltered):	17				Other (Area)		1	
Dissolved Phosphorus and Nitrogen (field filtered):	/18				Number of Transec	ts Sampled	1 (0-11)	
	1				Composite Volume	(ml)	1	
May—September Dry Season Monthly Algae:	19				The volume	(1114)		1
Chlorophyll a (filters—algae):	20			A P	Chlorophyll <i>a</i> Volur			
			1		(use GF/F filter, 25	mL preferr	ed volume	

Ventura River Algae TMDL Field Data Sheet (Reaches 1-4) - Page 1 of 1

Discharge Measurement

Event ID (Month Year): Site ID: TM Date/Time: 02/09/7022 08:00 Crew Members: SPSC Latitude/Longitude: 34,374852 Flow (circle one): Flowing / Ponded / Dry Wind Strength: Calm/Light Breeze/ Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From To Photos (check): \times Upstream Downstream Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.) :_ January—December Monthly In Situ Measurements: pH units EC: SC: 10/5 µS/cm %—Salinity: 0.53 ppt Water Temp: 14. °C Flow (from discharge measurement): Samples Collected (check box) January—December Monthly Water: Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered): 📈 May—September Dry Season Monthly Algae:

Chlorophyll a (filters—algae):

	1st		nt = left bank		king downstrea	m)
Vel	ocity Area M	lethod (pref	erred)		(Use only if v	oya elo
No.	Distance from Left Bank (ft)	Depth (ft)	Velocity (ft/sec)		Distance (ft)	
1	Dank (it)		/		Float Time (sec	1
2		/	1		Float	Rea
3		/			\	
4				I	Width	1
5		1	0		Depth 1	
6	- \	/	7		Depth 2	
7	V				Depth 3	
8			37		Depth 4	
_	-/	1			Depth 5	
9 10 11			X.	R	lay—Septembe each Length (15 wetted width >	0 m
12	/				Colle	8
-				Ri	ubber Delimiter	
14 /		\ \		P۱	/C Delimiter (Ar	ea=
16		1		Sy	ringe Scrubber	(Ar
17				0	ther (Area=	A
18				N	umber of Transe	cts
19				Co	omposite	ıe (ı
20					nlorophyll a Voli	
				1/11	se GF/F filter 2	5 m

Buc (Use only if ve	yant Object elocity area m		ossible)
1	Float 1	Float 2	Float 3
Distance (ft)		/	
Float Time (sec)	\	/	
Float	Reach Cross	Section (ft)
	Upper Section	Middle Section	Lower Section
Width	/	1	
Depth 1		1	
Depth 2		The state of the s	
Depth 3			Marie Company
Depth 4			1
Depth 5		1	1

May—September: Algae Collection for Ch Reach Length (150 m if wetted width ≤ 10 if wetted width > 10 m):	1
Collection Device (sum # transects per Device)	Quantity
Rubber Delimiter (Area=12.6cm²)	
PVC Delimiter (Area=12.6cm ²)	
Syringe Scrubber (Area=5,3cm²)	
Other (Area=)	
Number of Transects Sampled (0-11)	1,
Composite Volume (mL)	
Chlorophyll a Volume (use GF/F filter, 25 mL preferred volume)	,

Ventura River Algae TMDL Field D

Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

1st Measurement = left bank (looking downstream)

Event ID (Month Year): TOWAY 2002		1361	vicusur errieri	re – rere barik (i	coking downstream)			
Site ID: TMDL-SA	Vel	ocity Area N	lethod (pref	erred)	Buoy Use only if velo	ant Object		ossible
Date/Time: 17/9/2022 0930 Crew Members:	No	Distance from Left	Depth (ft)	Velocity	1:	Float 1	Float 2	Float 3
	"	Bank (ft)	Deptii (it)	(ft/sec)	Distance (ft)		/	
Latitude/Longitude: 39,380784 -19.30751	1	\			Float Time (sec)		/	
Flow (circle one): Flowing / Ponded / Dry Wind Strength:	2			/	Float R	each Cross	Section (ft)	
Calm / Pight Breeze / Moderate Breeze / Strong Breeze / Windy		-				Upper /	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3			25	-	Section	Section	Section
Photos (check): Downstream	4				Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5		1		Depth 1	/		
discharge comments, etc.) :	6	1		2	Depth 2			
			\/	17	Depth 3			
	7		l V		Depth 4			
	8		\wedge	M	Depth 5		-	1 1
January—December Monthly In Situ Measurements:	9	1		70	реригз			
pH: 8 05 pH units EC: μS/cm-	10	1			May—September:	Algae Colle	ection for C	hlorophyll a
DO: <u>V. 91</u> mg/L SC: <u>1486</u> µS/cm		-			Reach Length (150			0 m; 250 m
DO:% Salinity: 0.75_ ppt	11		— — —		if wetted width > 10	0 m):		
Water Temp: 10.6 °C	12				Collect	ion Device	/	Quantity
Flow (from discharge measurement):cfs	13				(sum # trans	ects per De	vice)	
	14	1			Rubber Delimiter (Area=12.6c	m²)	
Samples Collected (check box)	15	/			PVC Delimiter (Area	a=12.6cm ³)		
January—December Monthly Water:		/		1	Syringe Scrubber (A	\raa=5 3cm	31	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16	4				AI Ea Jo. Juli	1	
Nitrogen (unfiltered):	17 /				Other (Area=	/	1	
Dissolved Phosphorus and Nitrogen (field filtered):	18/				Number of Transec	ts Sampled	(0-11)	
Many Contambas Day Consess Manythin Alexan	19	1	1	, <u>,</u>	Composite Volume	(mL)	*	
May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): □	1		-	e pro	Chlorophyll a Volum	me		
Simologisting finites digues.	20				(use GF/F filter, 25		ed volume	The same of the sa
							-	

Ventura River Algae TMDI Field Data Sheet (Peaches 1

Frank ID (March Vary) T			Dis	scharge Meas						
Site ID: MDL- R3	Vel		/lethod (pref	7	Buoyant Object Method (Use only if velocity area method not pos					
Crew Members: SP, SC, SS	No.	Distance from Left Bank (ft)	Depth (ft)	Velocity (ft/sec)	Distance (ft)	Float 1	Float 2	float 3		
Latitude/Longitude: 34, 3456/0 -119, 299372 Flow (circle one); Flowing) Ponded / Dry	1			/	Float Time (sec)		/			
Wind Strength: Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	2				Float R	each Cross Upper	Section (ft) Middle	Lower		
Wind Direction: Blowing (circle one) From / To Photos (check): Upstream Downstream	3	<u> </u>	- /	0	Width	Section	Section	Section		
Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.):	5		/	-	Depth 1		1			
	6		\/	-	Depth 2 Depth 3		1			
	8		X	ET	Depth 4					
January—December Monthly In Situ Measurements:	9			#	Depth 5			Mar.		
pH: <u>\$7.06</u> pH units EC: μS/cm DO: <u>9.94</u> mg/L SC: <u> 26 μS/cm</u>	10				May—September: . Reach Length (150					
DO:% Salinity: <u>0.56</u> ppt Water Temp: <u>12.7</u> °C	11	-/		\	if wetted width > 10			/		
Flow (from discharge measureme nt):cfs	13				Collecti (sum # transe	on Device ects per De	vice)	Quantity		
	14				Rubber Delimiter (A	1	n²)			
Samples Collected (check box) January—December Monthly Water:	15 16			-	PVC Delimiter (Area	X	²)			
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered):	17				Other (Area=		X			
Dissolved Phosphorus and Nitrogen (field filtered): 💢	18/				Number of Transect		(0-11)			
May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): □	19				Composite Volume					
Chlorophyll a (filters—algae):	20				Chlorophyll a Volum (use GF/F filter, 25 r	•	ed volume)	1		

Ventura River Algae TMDL Field D. Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

Event ID (Month Year): February 2022		1st	Measuremer	nt = left bank (looking downstream)			
Site ID: ThDL-RZ Date/Time: OZ/09/2022 102/5	Ve	locity Area N	lethod (pref	erred)	Buoy (Use only if velo	ant Object		ossible)
Date/Time: OCIOGITATE (OST)	/	Distance		Velocity		Float 1	Float 2	Float 3
Crew Members: SP 5C, 5S	No.	from Left	Depth (ft)	(ft/sec)	Distance (ft)	110012	1.0012	110000
21134611-7 -179 2-74/2		Bank (ft)		(19 sec)				-
Latitude/Longitude: 3435 9437 - 179. 297 467	1				Float Time (sec)			
Flow (circle one): Flowing / Ponded / Dry	-	1	1	/	Float Re	each Cross	Section (ft)	
Wind Strength:	2					Upper	Middle	Lower
Calm Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one)-From / To	3			0		Section	Section	Section
Photos (check): Dipstream Downstream	4	1		2	Width		1	
Notes (e.g. homeless, wildlife, horses, swimming/recreation,			\ /		Depth 1		1	
discharge comments, etc.) :	5		$\backslash /$					
	6		X	Prov	Depth Z		1 1	
	7			111	Depth 3			
	-			TEN	Depth 4			
	8		4	30	Depth 5			
January—December Monthly In Situ Measurements:	9	/	\	,				
pH: 8.08 pH units EC: µS/cm	10				May—September:	Algae Colle	ection for C	hlorophyll <i>a</i>
DO: 9.87 mg/L SC: 1176 µS/cm		-	1	1	Reach Length (150			0 m; 250 m
DO: % Salinity: 0.59 ppt	11				if wetted width > 10	0 m):		-
Water Temp: 15.5 °C	12				Collecti	ion Device		Quantity
Flow (from discharge measureme <u>nt):</u> cfs	13	1/			(sum # trans	ects per De	evice)	A. A
	14	1/			Rubber Delimiter (rea=12.6ci	m²) /	
Samples Collected (check box)	15	1/		1	PVC Delimiter (Area	a=12.6cm²)	/	
January—December Monthly Water:	_	1		1	Syringe Scrubber (A	rea=5.3cm	(2)	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16	A			V	/	1.	
Nitrogen (unfiltered):	17/				Other (Area=		Y	
Dissolved Phosphorus and Nitrogen (field filtered): 🤾	18				Number of Transec	ts Sampled	(0-11)	
May—September Dry Season Monthly Algae:	19	1			Composite Volume	(mL)	1	
Chlorophyll a (filters—algae): □	20	1			Chlorophýll a Volur	ne		1
			1		(use GF/F filter, 25	mL preferr	ed volume)	

Ventura River Algae TMDL Field Data Sheet (Reaches 1-4) - Page 1 of 1

				charge Mea				
Event ID (Month Year): February 2002	P-	1st	Measuremer	nt = left bank	k (looking downstream)		
Site ID: TRIDLE RI	Vel	ocity Area M	lethod (pref	erred)		yant Object		
Date/Time: 62/09/1002 11:00		Distance			(Use only if ve			/
Crew Members: SP, SC, SS	No.	from Left	Depth (ft)	Velocity (ft/sec)	Distance (m)	Float 1	Float 2	Float 3
Latitude/Longitude: 34.28 17/7 119.309219		Bank (ft)		(idjsec)	Distance (ft)	-	/	
Flow (circle one): Flowing / Ponded / Dry	1	\		/	Float Time (sec)		/	
Wind Strength:	2	1		/	Float R	each Cross	Section (ft	
Calm/Light Breeze / Moderate Breeze / Strong Breeze / Windy		-	/			Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3	1	/			Section	Section	Section
Photos (check): Upstream Downstream	4			0	Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5			2	Depth 1			
discharge comments, etc.) :	6			_	Depth 2		1	
		\rightarrow		~	Depth 3		1	
	7			CH	Depth 4		1	
	8	/	\	H	/			1
January—December Monthly In Situ Measurements:	9			76	Depth 5			
pH: 4, 28 pH units _EC: uS/cm	10	/			May—September:	Algae Colle	ection for C	hlorophyll a
DO: <u>4, 1/2</u> mg/L SC: <u>1345</u> μS/cm		/			Reach Length (150	m if wetted	d width ≤ 1	0 m; 250 m
DO: Salinity: 0.70 ppt	11				if wetted width > 10	0 m):		_
Water Temp: 12 	12	/			Collecti	on Device		Quantity
Flow (from discharge measurement):efs	13 /		1		(sum # trans		vice)	, Lamina,
	14		1	\	Rubber Delimiter (kea=12.6cr	x(2)	
Samples Collected (check box)	/15			1	PVC Delimiter (Area	=12.6cm²)		
January—December Monthly Water:	/23			1	Syringe Scrubber	200 E 200	2,	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	/ 16				/	rea=5.3cm	_	
Nitrogen (unfiltered):	17				Other (Area=		1	
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transec	ts Sampled	(0-11)	
May-September Dry Season Monthly Algae:	19			1	Composite Volume	(mL)		Richard Are
Chlorophyll a (filters—algae):	20				Chlorophyll <i>a</i> Volun	ne		
					(use GF/F filter, 25	mL preferre	ed volume)	100

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

	Event ID (Month Year):	1st Measurement = left bank (looking downstream)								
Distance Crew Members:	Site ID:	Ve	locity Area N	1ethod (prefe	erred)					
No. from left Bank (ft)			Distance		Volocity		r e			
Lattiude/Longitude: Flow (circle one): Flowing / Ponded / Dry Wind Strength: Caim / Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From / To Photos (check): □ Upstream □ Downstream Notes (e.g., homeless, wildlife, horses, swimming/recreation, discharge comments, etc.): □	Crew Members:	No.		Depth (ft)		Distance (ft)	Hours	1 lout 2	Tiout 3	
Flow (circle one): Flowing / Ponded / Dry Wind Strength: 2	Latitude/Longitude:		Dunk (10)			Float Time (sec)				
Came Light Breeze Moderate Breeze Strong Breeze Windy		1	-				each Cross	Section (ft)		
3	_	2				Float N				
Photos (check):		3								
Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.):							Section	Section	Section	
Samples Collected (check box) 14		4								
Samples Collected (check box) January—December Monthly Water: Total Phosphorus, Total Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered): Dissolved Phosphorus and Nitrogen (field filtered): Dissolved Phosphorus and Nitrogen (field filtered): Dissolved Phosphorula of filters—algae): Diss		5				Depth 1				
Depth 4 Depth 5 Depth 6 Depth 5 Depth 6 Dept	discitaige comments, etc.)	6				Depth 2				
Samples Collected (check box) Ianuary—December Monthly Water: Total Phosphorus, Total Nitrogen, (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered): Dissolved Phosphorus and Nitrogen (fi		7		V.		Depth 3	-			
January—December Monthly In Situ Measurements: pH: pH units _ EC: µS/cm Do: mg/L SC: µS/cm Do: % Salinity: ppt Water Temp: °C Flow (from discharge measurement): cfs Samples Collected (check box) January—December Monthly Water: Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered): Dissolved Phospho	-	-	4			Depth 4		-27		
January—December Monthly In Situ Measurements: pH:pH units EC:µS/cm µS/cm 10 May—September: Algae Collection for Chlorophyll of Reach Length (150 m if wetted width ≤ 10 m; 250 m if wetted width > 10 m; 250		8				Depth 5				
DO:mg/L SC:μS/cm DO:% Salinity:ppt Water Temp:°C Flow (from discharge measurement):cfs 11	January—December Monthly In Situ Measurements:	9								
DO:	pH:pH units EC:μ\$/cm	10								
Water Temp:°C Flow (from discharge measurement): cfs 12 Collection Device (sum # transects per Device) Rubber Delimiter (Area=12.6cm²) PVC Delimiter (Area=12.6cm²) PVC Delimiter (Area=12.6cm²) Syringe Scrubber (Area=5.3cm²) Syringe Scrubber (Area=5.3cm²) Other (Area=) Number of Transects Sampled (0-11) May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): Dissolved Phosphorus and Nitrogen (field filtered): Disso		11	1						0 m; 250 m	
Flow (from discharge measurement):cfs						if wetted width > 1	0 m):			
Samples Collected (check box) January—December Monthly Water: Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered): May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): 13 Rubber Delimiter (Area=12.6cm²) PVC Delimiter (Area=12.6cm²) Syringe Scrubber (Area=5.3cm²) Other (Area=) Number of Transects Sampled (0-11) Composite Volume (mL) Chlorophyll a Volume		12				Collect	ion Device		Quantity	
Samples Collected (check box) January—December Monthly Water: Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered): May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): 15 15 15 16 17 18 17 18 19 19 19 19 19 19 10 10 11 10 11 11	Flow (from discharge measurement): cfs	13				(sum # trans	ects per De	vice)		
January—December Monthly Water: Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered): May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): 15 16 17 18 18 19 Chlorophyll a (filters—algae): Chlorophyll a Volume Syringe Scrubber (Area=5.3cm²) Other (Area=) Number of Transects Sampled (0-11) Composite Volume (mL) Chlorophyll a Volume		14				Rubber Delimiter (A	Area=12.6ci	m²)		
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered): May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): 16 17 18 19 Chlorophyll a Volume Syringe Scrubber (Area=3.5cm) Other (Area=) Number of Transects Sampled (0-11) Composite Volume (mL) Chlorophyll a Volume	Samples Collected (check box)	15				PVC Delimiter (Area	a=12.6cm²)			
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered): May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): Other (Area=) Number of Transects Sampled (0-11) Composite Volume (mL) Chlorophyll a Volume	January—December Monthly Water:	16				Syringe Scrubber (A	rea=5.3cm	²)		
Dissolved Phosphorus and Nitrogen (field filtered): May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): 17 18 Number of Transects Sampled (0-11) Composite Volume (mL) Chlorophyll a Volume		10						· ,		
May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae): Date of the season Monthly Algae: Chlorophyll a (filters—algae): Chlorophyll a Volume		17				Other (Area-				
Chlorophyll a (filters—algae): 20 Chlorophyll a Volume	Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transec	ts Sampled	(0-11)		
ZO ONO SPINI VOICING	May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)			
	Chlorophyll a (filters—algae):	20								

Ventura River Algae TMDL Field Data Sheet (Estuary) - Page 1 of 1

Ventura River Algae TMDI - Estuam Dataila

Site ID: TMDL-Est	Tarif Line	
Event ID (Month Year): February Crew Members: \$850,55		Time: 02/09/2022 11:30
Weather (circle one): Clear Partly Cloudy / (Direction of Tide: Ebb / Flood / Slack / N/A Wind Strength: Calm / Slight Breeze / Mode Notes (e.g. homeless, wildlife, dogs, swimming	Time of Low Tic	cle one) Open Restricted / Closed de: Time of High Tide: 1914 Wind Direction: Blowing From To
lonthly (Jan—Dec):		Water Samples Collected (check box) [Collect at Floating Macroalgae Quadrat 1, Transect 1]
Monthly (Jan—Dec): H: 79 JpH units O: 11,0% mg/L Sc: 60 F	_µS/cm Water Temp: 11.7°C	
	_µS/cm Water Temp: 11.7°C	[Collect at Floating Macroalgae Quadrat 1, Transect 1] Monthly Water (Jan—Dec): Nitrogen, total and dissolved: Phosphorus, total and dissolved:

Ventura River Algae TMDL Field D. Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

Event ID (Month Year): March 20122		1st l	vieasuremen	it = leπ bank (looking downstream)			
Site ID: VMTMDL - CL	Ve	locity Area M	lethod (pref	erred)	Buoy (Use only if velo	ant Object ocity area me		ssible)
Date/Time: 3/9/22 7:25 Crew Members: SH SC LL	No.	Distance from Left	Depth (ft)	Velocity		Float 1	Float 2	Float 3
	110.	Bank (ft)	Depth (it)	(ft/sec)	Distance (ft)		1	
Latitude/Longitude: 34.347011, -119, 2-86418	1				Float Time (sec)			
Flow (circle one): Flowing / Ponded / Dry			_		Float Re	each Cross	Section (ft)	
Wind Strength: Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	2	1				Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3	0	,			Section	Section	Section
Photos (check): Wystream A Downstream	4			ý · ·	Width	/		
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5		00		Depth 1		1	
discharge comments, etc.) :	6	. 00	DX	9	Depth 2			
		11/	1		Depth 3			
	7	1.			Depth 4			
	8				Depth 5			
January—December Monthly In Situ Measurements:	9							
pH: <u>δ. 43</u> pH units EC: μS/cm	10				May—September:			
DO: mg/L SC: <u>ΣΌ(,5</u> μS/cm	11				Reach Length (150			0 m; 250 m
DO: <u>11- 4 7 </u> % Salinity: <u>2. ラ 1</u> ppt	11				if wetted width > 1	u mj:		7
Water Temp: 5.2 °C	12				1	ion Device		Quantity
Flow (from discharge measurement): cfs	13				(sum # trans	- 1		
	14				Rubber Delimiter (/	Area=12.6c	m²)	
Samples Collected (check box)	15				PVC Delimiter (Are	a=12.6cm²)		
January—December Monthly Water:	16		1		Syringe Scrubber (/	Area=5.3km	²)	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16				Other (Area=	-	11	
Nitrogen (unfiltered):	17	14					1,	
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transec	ts Sampled	(0-11)	
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)	1	
Chlorophyll a (filters—algae):	20				Chlorophyll a Volu	me		
				_	use GF/F filter, 25	mL preferr	ed volume	1

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Event ID (Month Year): March 2022		1st		charge Mea et = left bank	surement (looking downstream)
Site ID: VA TMDL RY Date/Time: 3(9/22 8 1)	Ve	locity Area N	lethod (pref	erred)	Buoy (Use only if vel	ant Object
Crew Members: SH SC LL	No.	Distance from Left	Depth (ft)	Velocity		Float 1
Latitude/Longitude: 34-329 725 -119, 308 694		Bank (ft)		(ft/sec)	Distance (ft)	
Flow (circle one): Flowing / Ponded / Dry	1				Float Time (sec)	And the second
Wind Strength:	2				Float R	each Cross
Calmy Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From / To	3	04		, 0		Upper Section
Photos (check): Upstream Downstream	4	Ne	XCI		Width	
Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.) :	5		6		Depth 1	
ansertarge comments, etc., i	6				Depth 2	
	7				Depth 3	
	-	-	4:		Depth 4	
1	8				Depth 5	
January—December Monthly In Situ Measurements:	9					
pH: <u>& 200</u> pH units EC: μS/cm DO: <u>6.40</u> mg/L SC: <u>106</u> 7 μS/cm	10				May—September:	
DO: <u></u>	11			74 1	Reach Length (150) if wetted width > 10	
Water Temp: \S \ \ C	12				-	on Device
Flow (from discharge measurement): cfs	13				(sum # transe	
	14				Rubber Delimiter (A	rea=12.6c
Samples Collected (check box)	15				PVC Delimiter (Area	=12.6cm ²)
January—December Monthly Water:	16				Syringe Scrubber (A	ea=5.3cm
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered):	17				Other (Area=	1
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transect	s Sampled
May—September Dry Season Monthly Algae:	19				Composite Volume	mL)
Chlorophyll a (filters—algae):	20				Chlorophyll a Volum	

Buoy (Use only if vel	ant Object ocity area m		ossible)
	Float 1	Float 2	Float 3
Distance (ft)		- /	1
Float Time (sec)	And the second	/	
Float R	each Cross	Section (ft)	
	Upper Section	Middle Section	Lower Section
Width	1		
Depth 1		1	
Depth 2	,		
Depth 3		or start of the st	
Depth 4		7	() ·
Depth 5			

May—September: Algae Collection for Ch Reach Length (150 m if wetted width ≤ 10 if wetted width > 10 m):	
Collection Device (sum # transects per Device)	Quantity
Rubber Delimiter (Area=12.6cm²)	
PVC Delimiter (Area=12.5cm²)	
Syringe Scrubber (Area=5.3cm²)	
Other (Area=)	
Number of Transects Sampled (0-11)	
Composite Volume (mL)	
Chlorophyll <i>a</i> Volume (use GF/F filter, 25 mL preferred volume)	

Ventura River Algae TMDL Field Da Sheet (Reaches 1—4) - Page 1 of 1

1st Measurement = left bank (looking downstream)

Event ID (Month Year): wash dood		131	wieasurenier	it – ieit balik	(looking downstream)			
Site ID: VATMDL SA	Ve	locity Area M	lethod (pref	erred)	Buoy (Use only if vel	rant Object		ossible)
Date/Time: 3/9/22 Crew Members: SH SC LL	No.	Distance from Left	Depth (ft)	Velocity		Float 1	Float 2	Float 3
		Bank (ft)		(ft/sec)	Distance (ft)			
Latitude/Longitude: 34.3808入1, -119.30 > 389	1				Float Time (sec)		1	
Flow (circle one): Flowing Ponded / Dry					Float R	each Cross	Section (ft)	
Wind Strength: Calm /Light Breeze / Moderate Breeze / Strong Breeze / Windy	2	CM				Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3					Section	Section	Section
Photos (check): Downstream	4	MAG	2/1		Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5	100	11		Depth 1		The state of the s	
discharge comments, etc.) :					Depth 2			
	6				Depth 3			
	7							
	8				Depth 4			
	9				Depth 5			
January—December Monthly In Situ Measurements: pH: μS/cm					May—September:	Algae Colle	ction for C	lorophyll
DO: X.3 mg/L SC: \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	10				Reach Length (150			
DO:% Salinity: O ldo ppt	11				if wetted width > 10			
Water Temp: <u>\}.\</u> ℃	12				Collecti	on Device		Quantity
Flow (from discharge measurement): cfs	13				(sum # transe		vice)	Quantity
	14				Rubber Delimiter (A	1		
Samples Collected (check box)	_				PVC Delimiter (Area	1=12 6cm ²)		
January—December Monthly Water:	15					1		
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16		11 E -d		Syringe Scrubber (A	rea=5.3cm	4°	
Nitrogen (unfiltered):	17				Other (Area=	1)	
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transect	ts Sampled	(0-11)	
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)		
Chlorophyll <i>a</i> (filters—algae):	20				Chlorophyll a Volun	ne		
					luse GE/E filter 25	ml proferr	ad voluma)	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Discharge Measurement

Event ID (Month Year):	1st Measurement = left bank				(looking downstream)				
Site ID:	Ve	locity Area M	lethod (prefe	erred)	Buoyant Object Method (Use only if velocity area method not possible)				
Date/Time:		Distance		Velocity		Float 1	Float 2	Float 3	
Crew Members:	No.	from Left Bank (ft)	Depth (ft)	(ft/sec)	Distance (ft)				
Latitude/Longitude:	1				Float Time (sec)				
Flow (circle one): Flowing / Ponded / Dry Wind Strength:	2				Float Ro	each Cross	Section (ft)		
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From / To	3					Upper Section	Middle Section	Lower Section	
Photos (check): Upstream Downstream	4				Width				
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5				Depth 1	t= = :			
discharge comments, etc.) :	6				Depth 2				
	7				Depth 3			1	
					Depth 4				
	8	i i			Depth 5				
January—December Monthly In Situ Measurements: pH: pH units EC: μS/cm DO: mg/L SC: μS/cm	10				May—September: Reach Length (150	m if wetted	d width ≤ 10		
DO: % Salinity: ppt	-				if wetted width > 10				
Water Temp:°C Flow (from discharge measurement): cfs	13				Collecti (sum # transe	on Device ects per De	vice)	Quantity	
	14				Rubber Delimiter (A	rea=12.6cr	m²)		
Samples Collected (check box)	15				PVC Delimiter (Area	=12.6cm²)			
January—December Monthly Water:	16				Syringe Scrubber (A	rea=5.3cm	²)		
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as Nitrogen (unfiltered):	17				Other (Area=)		
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transect	ts Sampled	(0-11)		
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)			
Chlorophyll a (filters—algae):	20				Chlorophyll <i>a</i> Volun		ed volume)		

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

No. from Left Bank (ft) Depth (ft)					charge Meas				
Date/Time: 34/34 G15G Crew Members: SH SC LL Latitude/Longitude: 34.345 St 14.349377 Flow (circle one): Flowing-Ponded / Dry Wind Strength: Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one): From / To Photos (check): 40 pstream	Event ID (Month Year): Much 2003	1st Measurement = left bank ((looking downstream)				
Distance from Left pepth (ft) (ft/sec) Latitude/Longitude: 34.3455	Site ID: UR TMDL R3	Velocity Area Method (preferred)							
Bank (ft) Float Time (sec) Float Tim				(5.)	Velocity	(550 6111) 11 161	-		Float 3
Float Circle one Flowing Ponded / Dry Wind Strength: Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy Wind Direction: Blowing (circle one) From / To Photos (check):		No.		Depth (ft)	(ft/sec)	Distance (ft) \			
Flow (circle one): Flowing / Ponded / Dry Wind Strength: 2 Photos (check): Depth 2 Depth 3	Latitude/Longitude: 34 345538 -119, 299372	-	Bank (IL)			Float Time (sec)			
Salm Steregin Section Sect		1					Lab Cuasa	Coation (ft)	
Wind Direction: Blowing (circle one) From / To		2	10	()		Float K	1		
Photos (check):		3	1				100		Lower
Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.): Depth 1 Depth 2 Depth 3			100			14/11/1	Section	Section	Section
discharge comments, etc.): 5 6 Depth 2 Depth 3 Depth 4 Depth 5 January—December Monthly In Situ Measurements: 9 10 Depth 5 Depth 4 Depth 5 Depth 5 Depth 5 Depth 6 Depth 7 Depth 7 Depth 8 Depth 9 D		4	111/16	101					
Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 Depth 5 Depth 6 Depth 5 Depth 6 Depth 7 Depth 6 Depth 7 Depth 6 Depth 7 Depth 7 Depth 7 Depth 7 Depth 7 Depth 8 Depth 9 De		5	NA FE	XX		Depth 1		Personal Property Control of the Con	
Depth 4 Depth 5 Depth 5 Depth 5 Depth 6 Depth 5 Depth 7 Depth 6 Depth 8 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth 9 Depth	1	6				Depth 2			
Sanuary December Monthly In Situ Measurements: PH:		7				Depth 3			
January — December Monthly In Situ Measurements: pH:			-			Depth 4			
Solution Paragraphic P		8				Depth 5			1
pH:	January—December Monthly In Situ Measurements:	9							
DO: <u>9.79 mg/L SC: 11/3 μS/cm</u> DO:% Salinity: <u>O.56 ppt</u> Water Temp: <u>12</u>		10				May—September:	Algae Colle	ction for C	hlorophyll <i>a</i>
Water Temp: 12 Collection Device (sum # transects per Device) 12 Rubber Delimiter (Area=12.6cm²) PVC Delimiter (Area=12.6cm²)	DO: <u>9.79</u> mg/L SC: <u>\\\]3</u> μS/cm								0 m; 250 m
Flow (from discharge measurement):cfs	DO:% Salinity: O.S.6 ppt	11				if wetted width > 10	m):		
13 Rubber Delimiter (Area=12.6cm²) PVC Delimiter (Area=12.6cm²)	· ——	12			7.1	Collecti	on Device		Quantity
PVC Delimiter (Area=12 6cm²)	Flow (from discharge measurement):cfs	13				(sum # transe	ects per De	vice)	
Samples Collected (check box) PVC Delimiter (Area=12.6cm²)		14				Rubber Delimiter (A	rea=12.6ci	m²)	
	Samples Collected (check box)	15				PVC Delimiter (Area	=12.6cm²)	0	
January—December Monthly Water:	January—December Monthly Water:					Syringe Scrubber (A	rea=5.3cm	2	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16					i ca-s.seiii		
Nitrogen (unfiltered): Other (Area =)	Nitrogen (unfiltered):	17				Other (Area=)	
Dissolved Phosphorus and Nitrogen (field filtered): 18 Number of Transects Sampled (0-11)	Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transect	ts Sampled	(0-11)	
May—September Dry Season Monthly Algae: 19 Composite Volume (mL)	May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)		
Chlorophyll a (filters—algae): Chlorophyll a Volume Chlorophyll a Volume	· · · · · · · · · · · · · · · · · · ·					Chlorophyll a Volun	ne		
(use GF/F filter, 25 mL preferred volume)		20		k == 1 (ed volume)	

Ventura River Algae TMDL Field Da Sheet (Reaches 1—4) - Page 1 of 1

				charge Meas				
Event ID (Month Year): MACh 2003		1st	Measuremer	nt = left bank	(looking downstream)			
Site ID: M TMDL RZ	Ve	Velocity Area Method (preferred)		Buoyant Object Method (Use only if velocity area method not possible)				
Date/Time: 3/9/22 10:56		Distance			(Use only if vei			
Crew Members: SH 5C	No.	from Left	Depth (ft)	Velocity	-	Float 1	Float 2	Float 3
2/1 92 (1865) 16 36:722		Bank (ft)		(ft/sec)	Distance (ft)			
Latitude/Longitude: 34-33-4545 - 414-34773	1				Float Time (sec			
Flow (circle one): Flowing / Ponded / Dry Wind Strength:			h		Float R	each Cross	Section (ft)	
Calm / tight Breeze / Moderate Breeze / Strong Breeze / Windy	2	N				Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3	Λ.	,	/	1	Section	Section	Section
Photos (check): pstream Downstream	4	1///	20	/	Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,		VV	W.		Depth 1			-
discharge comments, etc.) :	5							-
	6				Depth 2			
	7				/Depth 3			
÷				_	Depth 4			
	8				Depth 5			
January—December Monthly In Situ Measurements:	9							
pH: Υ. Το pH units EC: μS/cm	10				May—September:			
DO:mg/L SC:μS/cm	11				Reach Length (150			0 m; 250 m
DO:% Salinity: <u>@\\$\frac{1}{2}\\$\fr</u>	11				if wetted width > 10) m):		_
Water Temp: 14.0 °C	12				Collecti	on Device		Quantity
Flow (from discharge measurement): cfs	13			34-3	(sum # transe	cts per De	vice)	1
	14				Rubber Delimiter (A	rea 12.6cr	n²)	
Samples Collected (check box)	15				PVC Delimiter (Area	=12.6cm ²)		
January—December Monthly Water:	-				Syringe Scrubber (A	ron-5 2cm	ξ ₁	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16				/	pea=5.5Cm	Y	
Nitrogen (unfiltered):	17				Other (Area=		V	
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transect	s Sampled	(0-11)	
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)		
Chlorophyll <i>a</i> (filters—algae):	20				Chlorophyll a Volun	ne		
	20				(use GF/F filter, 25 i		ed volume)	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

Event ID (Mon		
Site ID: <u>Vか</u>	LWDT -	RI
Date/Time:	3/9/22	12:03
Crew Members:	SH SC	LL
Latitudo / Longitus	do: 34 50	1943 -119.309115
Flow (circle one):	Flowing / Po	naea / Dry
Wind Strength: (
Calm / Light Breeze	/ Moderate Bree	eze / Strong Breeze / Windy
Wind Direction: 8	Blowing (circle	one) From / To
Photos (check):	pstream	n Downstream
Notes (e.g. home	less, wildlife, h	orses, swimming/recreation
discharge comme		

pH: 8.27 pH units DO: 9.41 mg/L	EC:	μS/cm	
DO: 9.41 mg/L	SC: 1365	μS/cm	
DO: % Sal	inity: 🕜 🗽	ppt ppt	
Water Temp: <u>1 入 多</u>	_°C	•	
Flow (from discharge me	easurement):		cfs

Samples Collected (check box)	
January—December Monthly Water:	
Total Phosphorus, Total Nitrogen, and Nitr	ate + Nitrite as
Nitrogen (unfiltered):	\ <u>\</u>
Dissolved Phosphorus and Nitrogen (field fi	iltered):
May—September Dry Season Monthly Alg	;ae:
Chlorophyll a (filters—algae):	

Discharge Measurement

1st Measurement = left bank (looking downstream)

Ve	locity Area M	ethod (prefe	erred)
No.	Distance from Left Bank (ft)	Depth (ft)	Velocity (ft/sec)
1			1.00
2	CN)	
3	1	1 -	1
4	WY	45	1
5	V		
6			
7			
8			
9			-
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20		1	

Buo (Use only if vel	yant Object ocity area m		ossible)
	Float 1	Float 2	Float 3
Distance (ft)			
Float Time (sed)		/	
Float R	each Cross	Section (ft)	
	Upper Section	Middle Section	Lower Section
Width	X		
Depth 1	1		
Depth 2			
Depth 3			
Depth 4			V. T
Depth 5			

May-September: Algae Collection for Ch	lorophyll a
Reach Length (150 m if wetted width ≤ 10	m; 250 m
if wetted width > 10 m):	
Collection Device	Quantity
(sum # transects per Device)	
Rubber Delimiter (Area=12.6cm²)	
PVC Delimiter (Area=12.6cm²)	
Syringe Scrubber (Area=5.3cm²)	
Other (Area=)	
Number of Transects Sampled (0-11)	
Composite Volume (mL)	
Chlorophyll a Volume	
(use GF/F filter, 25 mL preferred volume)	

Ventura River Algae TMDL Field Data Sheet (Estuary) - Page 1 of 1

Ventura River Algae TMDL—Estuary Details

Site ID: TMDL-Est Event ID (Month Year): March 2022. Da Crew Members: SH SC 122	ite/Time: 3/9/22 12:43
Weather (circle one): Clear / Partly Cloudy / Overcast / Rainy / Foggy Ocean Inlet	(circle one): Open / Restricted / Closed
Direction of Tide: Ebby Flood / Slack / N/A Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze / Windy / Strong Notes (e.g. homeless, wildlife, dogs, swimming/recreation):	Wind Wind Direction: Blowing From / To
In Situ Measurements (Measure at Floating Macroalgae Quadrat 1, Transect 1) Monthly (Jan—Dec): pH: 8.5 4 pH units EC: μS/cm DO: 1366 mg/L SC: 2788 μS/cm DO:% Salinity: 1.25 ppt	Water Samples Collected (check box) [Collect at Floating Macroalgae Quadrat 1, Transect 1] Monthly Water (Jan—Dec): Nitrogen, total and dissolved: Phosphorus, total and dissolved: Nitrate + Nitrite as Nitrogen:
Photos: Oceanward to Andward	
Sample Latitude: 34 274661	
Sample Longitude - 119,302268	

Deployment / Mid / Retrieval					Flow (circle one): Flowing/Ponded/ Dry YSI Measurements				
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	pH	Conductivity (μs)	Salin
		0.51		US:					
3·3·22		*W:	- 10cm	US; <u>_</u> *					
, <u>_</u>		ºW:	-	US; <u>_</u> *					
<u></u>		ºW:	-	US; <u>_</u> *					
		ºW:	-	US; <u>_</u> *			· · · · · · · · · · · · · · · · · · ·		
	scription:	ºW:		JUS:					

,	220 t / Mld / R	Retrieval		Flow (circle one): Flowing/ Ponded/ Dry					
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	YSI N Dissolved Oxygen (mg/L)	fleasurem pH	Conductivity (µs)	Salinit (ppt)
3.3.22	1230	°N:	6	US:					
ocation De	scription:	Lon Flor	n bus	typ.	702/				
Location De	scription:	Lon Flor	n bur	typ.	1 cp /				
ocation De	scription:	Lon Flor	n bur	typ.	7 (2)				
		Lon Flo	***	Typ.	700/				
			***	14/	7 (2)				

Deployment / Mid / Retrieval					Flow (circle one): Flowing/ Ponded/ Dry				
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	PSI Dissolved Oxygen (mg/L)	Measureme pH	Conductivity (µs)	Salini (ppt
3.8.22	OPTO	N: 34.34190 W: 189.286158	- 14	US:	6.6	12.29	7.94	5218	2.8
								-	

Deployment / Mid / Retrieval					Flow (circle one): Flowing/ Ponded/ Dry				
							Measureme	nts	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (µs)	Salinity (ppt)
3.8.22	1025	ON: 44.380864 OW: 119.307016	22	US:	13.8	12.74	8.03	1575	0.8
Location De	cription:						19		
-	-					L. A.			
				***				7 1 1 4 1	
		±	· 						
2									
Comments:	-								-
	-								
		,			· · · · · · · · · · · · · · · · · · ·				

Site ID:	MINOL				Field Crew:_S	awyer (LUMDON	L,	_	
Deployment / Mid / Retrieval					Flow (circle one): Flowing/ Ponded Dry					
						YSI	Measureme	ents		
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinit (ppt)	
3.8.22	1130	on: 34,27(964 ow: 119, D9034		US:	14.2	12.33	8.14	7534	4.06	
Location De										
Comments:			•					***************************************		
			4				-			
				c						

Site ID: TY	MOL-		Field Crew:	gowy3	2	J mmn	_				
Deployment	eployment / Mid / Retrieval					Flow (circle one): Flowing/ Ponded/ Dry					
					YSI	Measureme	ents				
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinity (ppt)		
3.15.22	0841	ON: 50m2	- 12	US:	8.100	11-63	8.07	5289	2.84		
Location Des	scription:	Lon FLon	✓ 						78		
Comments:											
	-										

Deployment Mid / Retrieval					Flow (circle one) Flowing/Ponded/ Dry					
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	pH	Conductivity (μs)	Salinity (ppt)	
3.15-22	0921	oN:	1 /	US:	9.7°C	9.82	7.90	1601	0,81	
									-	
Location De	scription:	- Catting to	5 b2 L	on F	lon no	~ '				
			· · · · · · · · · · · · · · · · · · ·	<u> </u>						
							-	·		
				-						
Comments:									-	

								-		

Site ID:	MAL	- 557		Field Crew:						
Deployment / Mid / Retrieval					Flow (circle one): Flowing/Ponded/ Dry					
					YSI Measurements					
Date	Time	Coordinates	Depth (cm)	Photos /	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (µs)	Salinit (ppt)	
3.15.22	1003	ON: KOWZL		US:	13.9	8.58	8,02	7654	4.06	
								-,		
omments:										

Deployment / Mid / Retrieval			Flow (circle one): Flowing/ Ponded/ Dry YSI Measurements						
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	pH	Conductivity (µs)	Salinity (ppt)
		12.1		in 1/	, /	6 /	,		,
3.23.22 .ocation Des		ORY JA	57 mo157	Dony	p mud	n/s / puoo		N/R	n/s
		oW:	57 mois7	DS:				No	n/b
ocation Des	scription:	DRY, Ju	•	DS:	PmuD	/ puoo	L75		
ocation Des	scription:	oW:	•	DS:	PmuD	/ puoo	L75		

Rincon/Ventura Rive ____ Jata Logger Field Sheet

Site ID:	TMDL-50			Field Crew:	SOW YER		Jim M	-			
Deployment	t / Mid / R	Retrieval			Flow (circle one): Flowing/ Ponded/ Dry						
		_				YSI	Measurem	ents			
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	pH	Conductivity (µs)	Salinity (ppt)		
3-23.22	1032	ON: 520W2	0.0	US:	14.2	\$.74	7.45	1/2.9	0,56		
Location De	scription:	5 on drs	in Ponder	Jorea	, DRY 3-L	-szwha	<i>₹</i>				
Comments:						No.					
								*			

Rincon/Ventura Rive. _ _ Jata Logger Field Sheet

						YSI	Measureme	nts	
Date	Time	Coordinates	Depth (cm)	Photos	Water Temp (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μs)	Salinit (ppt)
3-23-	1)14	ON: 574m2		us: V		7 01			
	L ' '	Lower Mr.		DS:	17.3	7.36	8.01	1852	0.91
	L ' '	⁰ W:		1/	17.3		8.01	1852	0.90
	L ' '	⁰ W:		1/	17.3		8.01	1852	0.94
	escription:	⁰ W:		1/	17.73		8.01	1852	0.90

rom: Aquatic Bioa and Consult 29 N. Olive Ventura, CA	ing Labs. St.	Phone: Fax: Project ID:	(805) 6			To: Company: PHYSIS Address: 1904 E Wright Circle Anaheim, CA 92806 Phone: (714) 335-5793							
							ANALYSIS						
Sample I.D. No.	Sample Date	Time	Matrix	Volume/ No.	Reps	Nitrate / Nitrite, Field Filtered (SM 4500 NO3 E / SM 4500 NO2 B)	Total Phosphorous (SM 4500-P E)	Dissolved Phosphorous, Field Filtered (SM 4500-P E)	Total TKN (EPA 351.2)	Dissolved TKN (EPA 351.2)		Comments	
-TMDL-CL	04/15/000		Water	3-250 mL, pl; 2-250 mL, gl							not-enue	Luxuter to collect	
TMDL-R4	04/13/2002		Water	3-250 mL, pl; 2-250 mL, gl	(X	X	X	X	X	1000.00	ward walled	
TMDL-SA		68:36	Water	3-250 mL, pl; 2-250 mL, gl.	1	X	X	X	X	X			
TMDL-R3	04/3/2022		Water	3-250 mL, pl; 2-250 mL, gl	1	X	X	X	X	X			
TMDL-R2		09:50	Water	3-250 mL, pl; 2-250 mL, gl	1	×	X	X	X	X			
TMDL-R1	04/13/2002		Water	3-250 mL, pl; 2-250 mL, gl	(X	X	X	X	X			
TMDL-Est	or 103/2002	11:20	Water	3-250 mL, pl; 2-250 mL, gl	1	X	X	X	X	X			
		 and total/dis	solved Ti	KN preserv	ed with	H₂SO₄; Em	ail repor	t to karin@	aquatic	bioassay	/.com and kbrta	lik@rinconconsultants.	
RELINQUIS	SHED BY	Namo: &	RECEIV	ED BY	,	Name	RELIN	NQUISHED	BY		1	CEIVED BY	
ignature:	2010	Name: Signature:	. 0	1 50		Name:					Name:		
da - and and a	Time: 12126	Contract Contract		7 Times 1	2.20	Signature			T:		Signature:	-	
ate:64/83/2022	Time: 12:26	Date: 04/	17/27	ime:	0.10	Date:			Time:		Date:	Time:	

Ventura River Algae TMDL Event Details

EVENT DETAILS Event ID (Month Year):	2072		Date: 04/13/2022
Crew Members:	Н	_	Date.
	oudy / Overcast / Showers	/ Rain / Ot	ther
	<0.1" rain per day for the p		
	days with ≥0.1" rain and th		
Notes :	•		-
OBSERVATION SITES (RIVER FLO	DW)		
Ventura River at Highway 150 ((Baldwin Road)		
Flow Status : Dry / Ponded / Flow		cfs)	Photos Taken: Upstream / Downstream
Notes:			
Ventura River at Santa Ana Blv			
Flow Status: Dry / Ponded / Flow		cfs)	Photos Taken: Upstream / Downstream
Notes:			
N. A. of Pierra of Conitro Mints P	Na ad		
Ventura River at Casitas Vista F Flow Status: Dry / Ponded / Flow		cfs)	Photos Taken: Upstream / Downstream
Notes:			Thotas ratem opstream, boundaream
101231			
Additional Observation Site:			
Flow Status: Dry / Ponded / Flow			Photos Taken: Upstream / Downstream
Notes:			
UNSAMPLED TMDL SITES			
Site ID: THDL-CL	Time:	8	Photos Taken: Upstream / Downstream
Flow Status Dry / Ponded / Flowi			Thousand Tanana Spanies
Reason not sampled (if flowing):	-		
Notes:			
Site ID: Flow Status: Dry / Ponded / Flowi	Time:		Photos Taken: Upstream / Downstream
Notes			
Site ID:	Time:	J.	Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowi			
Notes:			
			at a makes the second (a)
			Photos Taken: Upstream / Downstream
Flow Status: Dry / Ponded / Flowing):	_ :		
keason not sampleα (Ir flowing): _ Notes:			

Assessment of hydrologic states

Site:		Lat: <u>39.391905</u> Long: <u>-119.2863.54</u> Date: <u>01/13/2022</u>
	erver(s):	SC, EM (Emily McCord)
	habitats: Estima (2007). Total mu	te the percent cover of each habitat type <i>across the entire reach</i> , to within 5%. Definitions follow st equal 100%.
	Ca	scades Rapids Riffles Runs Glides Pools Dry
% of	reach	207
		state that most closely matches the dominant state of the reach:
State	e (check one)	Description, indicators
	Hyperrheic (flooding)	Water may be above banks and turbid or carrying suspended particles. Movement of streambed particles may occur.
	Eurheic (baseflow)	Water always below banks (if banks are evident). Discharge is high enough to allow access to most of the stream bed. Many different flow microhabitats may be evident (e.g., riffles, pools, runs, glides). Gravels will generally be stable on the streambed.
	Oligorheic (limited flow)	Discharge is low but sufficient to connect pools and other aquatic habitats through small rivulets. Surface water is more or less continuous throughout reach. Riffles are scarce.
) 	Arheic (disconnected pools)	Discharge is close to zero, may not be visibly evident. Pools may be abundant, but may be disconnected. This state may not exist in sandy streams with rapid groundwater infiltration or in concrete channels.
7	Hyporehic (subsurface water)	Most of the stream bed is devoid of surface water, although substrate may remain wet enough to support active hyporheic life. Terrestrial fauna may be common on the stream bed. This state may not exist in concrete or bedrock channels
	Edaphic (dry)	The entire stream bed is devoid of surface water, and the substrate (if present) is too dry to support active hyporheic life (although dessication-resistent life stages may be present). Soil moisture in the streambed is not discernibly greater than in nearby soils above the banks.
Hobo	Meter Depth (n	n):
		ment conditions (at transects A, F, and K, if possible).
Note	s:	
		4)
Е		
1		

Ventura River Algae TMDL Field Da Sheet (Reaches 1—4) - Page 1 of 1

				charge Measi				
Event ID (Month Year): April 7000		1st I	Measuremen	nt = left bank (looking downstream)			
Site ID: TMDL-RY	Velo	ocity Area N	lethod (pref	erred)	Buoy (Use only if velo	ant Object		
Date/Time: 04/13/2022 805		Distance		V-1	(USE OTHY IT VEH	Float 1	Float 2	/
Crew Members: SP, SC, EM	No.	from Left	Depth (ft)	Velocity (ft/sec)	Distance (ft)	LIDALT	Float 2	Float 3
Latitude/Longitude: 34.374841 -119 308 489		Bank (ft)		1	Float Time (sec)		/	
Flow (circle one): Flowing Ponded / Dry	1				rioat Time (sec)		/	
Wind Strength:	2				Float Re	each Cross	Section (ft)	
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	3			/		Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	-	1		0		Section	Section	Section
Photos (check): Downstream	4		1	<	Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation, discharge comments, etc.) :	5		\ /		Depth 1			
	6	1 1	\/	2	Depth 2			
	7		X	W	Depth 3		1	
			/\	-	Depth 4			
	8		/ \	M	Depth 5			
January—December Monthly In Situ Measurements:	9			70	/			-\-
pH: 757pH units EC: µS/cm	10	1		/	May-September:			
DO: mg/L SC: μS/cm		/			Reach Length (150			O m; 250 m
DO: Salinity: 0.36 ppt	11				if wetted width > 10	m):		/_
Water Temp: [5_8_ °C	12	1			Collecti	on Device	1	Quantity
Flow (from discharge measurement):cfs	13	/	- E		(sum # transe		vice)	
	14				Rubber Delimiter (A	rea=12.6cr	n²)	
Samples Collected (check box)	15				PVC Delimiter (Area	=12.6cm ²)		
January—December Monthly Water:	1			-	Syringe Scrubber (A	ron-5 2cm	1	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16/	1, 1 1,		\		ea=3.5cm	1	
Nitrogen (unfiltered):	1/1			1	Other (Area=		1	
Dissolved Phosphorus and Nitrogen (field filtered):	18				Number of Transect	s Sampled	(0-11)	
May—September Dry Season Monthly Algae:	19				Composite Volume	(mL)		1
Chlorophyll <i>a</i> (filters—algae):	-				rid.			
a.g.ae,	20				Chlorophyll a Volum			
					(use GF/F filter, 25 r	nt preferre	d volume)	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

			charge Measi				
Event ID (Month Year): APR 2022	1st N	Measuremen	nt = left bank ((looking downstream)			
Site ID: TMDL-SA	Velocity Area M	ethod (pref	erred)	Buoy Use only if vel	ant Object		esible
Date/Time: 045/7022 0830	Distance			(Use Offiny III Ver			
Crew Members: SP,SC,EM	No. from Left Bank (ft)	Depth (ft)	Velocity (ft/sec)	Distance (%)	Float 1	Float 2	Float 3
Latitude/Longitude: 31,30821 -119,507253	1			Float Time (sec)	0 - 1	/	
Flow (circle one): Flowing / Ponded / Dry	1			Float P.	each Cross	Faction (ft)	
Wind Strength:	2)		Float N			
Calm Light Breeze / Moderate Breeze / Strong Breeze / Windy	3	1	0		Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	- 3		3		Section	Section	Section
Photos (check): Downstream	4		2	Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5		3	Depth			
discharge comments, etc.) :	6		0	Depth 2		1	
	7	Y	6	Depth 3			
		\wedge	1	Depth 4			
	8		277	Depth 5			
January—December Monthly In Situ Measurements:	9		2		Fig. 17 7.		
pH: 7.50 pH units EC: μs/cm	10			May—September: Reach Length (150			/
DO: 518 mg/L SC: 1049 μS/cm DO: 8 Salinity: 0.52 ppt	11			if wetted width > 10			5111, 25,5111
Water Temp:°C	12			1			V2
Flow (from discharge measurement): cfs			1	(sum # trans	on Device	vice) /	Quantity
	13			Rubber Delimiter (A		-/-	
	14			V	-	/	
Samples Collected (check box)	15			PVC Delimiter (Area	a=12.6cm/)		
January—December Monthly Water:	16			Syringe Scrubber (A	rea=5.3cm	2)	
Total Phosphorus, Total Nitrogen, and Nitrate + Nitrite as	16			Other (Area=	/	1	
Nitrogen (unfiltered): Dissolved Phosphorus and Nitrogen (field filtered):	17			Number of Transec	ts Sampled	(0-11)	
	18/		-	Composite Volume			
May—September Dry Season Monthly Algae:	1,5			/			1
Chlorophyll a (filters—algae):	/20			Chlorophyll a Volur (use GF/F filter, 25		ed volume)	

Ventura River Algae TMDL Field Da Sheet (Reaches 1—4) - Page 1 of 1

		Discharge Measu				
Event ID (Month Year): April 2022	1st Measu	rement = left bank (looking downstream)			
Site ID: TMDL - R3	Velocity Area Method	(preferred)		ant Object		
Date/Time: 04/13/2022 6910	Distance		Use only if velo	_		
Crew Members: SP, SC, EH	No. from Left Dept	h (ft) Velocity		Float 1	Float 2	Float 3
Latitude Description of TUT TIPE 21 and the second	Bank (ft)	(ft/sec)	Distance (ft)			
Latitude/Longitude: 34, 345531 -17.265381	1		Float Time (sec)			she i
Flow (circle one): Flowing / Ponded / Dry Wind Strength:	2	6	Float Re	each Cross	Section (ft	
Calm / Light Breeze / Moderate Breeze / Strong Breeze / Windy	2	19		Upper	Middle	Lower
Wind Direction: Blowing (circle-one) From / To	3	/		Section	Section	Section
Photos (check): Upstream Downstream	4		Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5	1 =	Depth 1		1	
discharge comments, etc.):		T			1	
	6		Depth 2			
	7	M	Øepth 3			
	8	70	Depth 4			
	1 /\		Depth 5			
January—December Monthly In Situ Measurements:	9		V2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			
pH:μS/cm DO:mg/L SC:μS/cm	10		May—September:	- 10		-
DO: mg/L SC:	11		Reach Length (150)			0 m; 250 m
Water Temp: 157 °C	12		if wetted width > 10	тт):		
Flow (from discharge measurement):	12			on Device		Quantity
	13		(sum # transe	cts per De	vice)	
	14		Rubber Delimiter (A	rea=12.6cn	n ²)	
Samples Collected (check box)	15		PVC Delimiter (Area	1,2.6cm ²)		
January—December Monthly Water:	1	1	Surings Samulahan (A)		4	-
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16	No.	Syringe Scrubber (A	ea=9.3cm	1	
Nitrogen (unfiltered):	17	مع تا تا تا تا الله	Other (Area=)	
Dissolved Phosphorus and Nitrogen (field filtered):	18 /	1	Number of Transect	s Sampled	(0 11)	
May Contomber Day Concer Manable Alexan		77	Composite Volume (ml)	1	
May—September Dry Season Monthly Algae: Chlorophyll a (filters—algae):	19/					
Chlorophyll <i>a</i> (filters—algae):	20		Chlorophyll a Volum			
			(use GF/F filter, 25 n	nL preferre	d volume)	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

		4-1		charge wieasu				
Event ID (Month Year): April 7077		IST	vieasuremer	nt = left bank (looking downstream)			
Site ID: THDL RZ	Ve	locity Area N	lethod (pref	erred)	Buoy Use only if vel	ant Object		nssible)
Date/Time: 04/3/2022 0950		Distance		/	(USC SINY II VEI	Float 1	Float 2	Float 3
Crew Members: SPSC, EM	NO	from Left	Depth (ft)	Velocity (ft/sec)	Distance (ft)	FIDAL I	rioat 2	riuat 3
Latitude/Longitude: 33339 402 -119, 797341		Bank (ft)			Float Time (sec)		-	
Flow (circle one): Flowing / Ponded / Dry	1	1			1		. 6. 100	
Wind Strength:	2				Float R	each Cross	Section (ft)	
Calm/ Light Breeze / Moderate Breeze / Strong Breeze / Windy				10		Upper	Middle	Lower
Wind Direction: Blowing (circle one) From / To	3		1	2		Section	Section	Section
Photos (check): Upstream Downstream	4		_/		Width			
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5			7	Depth 1		1	
discharge comments, etc.) :	6	1	1	TT	Depth 2		1	
		-	1		epth 3			
	7			M	Depth 4			
	8		X	2	Depth 5	1		
Described to the Manual Control of the Manua	9				Deptilis			
<u>January—December Monthly In Situ Measurements:</u> pH: <u>β,00</u> pH units <u>EE: μS/cm</u>		/*			May-September:	Algae Colle	ction for C	hlorophyll/a
DO: 9.69 mg/L SC: 12.64 μS/cm	10	1			Reach Length (150	m if wetted	d width ≤ 1	0 m; 250 m
Salinity: 0.60 ppt	11				if wetted width > 10) m):		
Water Temp:°C	12	1			Collect	on Device	/	Quantity
Flow (from discharge measurement):cfs	13		1		(sum # trans		vice)	
	14				Rubber Delimiter (A	rea=12.6cf	n²)	
Samples Collected (check box)	15	/			PVC Delimiter (Area	=12.6cm ²)		
January—December Monthly Water:	13	/		-	Syringe Scrubber (A	roa-5 3cm	2)	
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16	/			-	rea-J.Scill	. /	
Nitrogen (unfiltered):	17				Other (Area=			
Dissolved Phosphorus and Nitrogen (field filtered): 🗡	18				Number of Transec	ts Sampled	(0-11)	
	19				Composite Volume	(mL)		
May—September Dry Season Monthly Algae:	1				Lu III VI			
Chlorophyll a (filters—algae): □	<i>1</i> 20			\.	Chlorophyll <i>a</i> Volur (use GF/F filter, 25		ed volume)	

Ventura River Algae TMDL Field Data Sheet (Reaches 1—4) - Page 1 of 1

10	Discharge Meas	
Event ID (Month Year): April 7000	1st Measurement = left bank	(looking downstream)
Site ID: THOI - RI	Velocity Area Method (preferred)	Buoyant Object Method
Date/Time: 10/13/2022 1040	Distance	(Use only if velocity area method not possible)
Crew Members: 59.50, EM	No from Left Depth (ft) Velocity	Float 1 Float 2 Float 3
Latitude/Longitude: 34.787.022 -119.308162	Bank (ft) (ft/sec)	Distance (ft)
Flow (circle one): Flowing / Ponded / Dry	1 /	Float Time (sec)
Wind Strength:	2	Float Reach Cross Section (ft)
Calm/ Light Breeze / Moderate Breeze / Strong Breeze / Windy		Upper Middle Lower
Wind Direction: Blowing (circle one) From / To	3 / ~	Section Section Section
Photos (check): Dupstream Downstream	4	Width
Notes (e.g. homeless, wildlife, horses, swimming/recreation,	5	Depth 1
discharge comments, etc.) :	6	Depth 2
	7	Depth 3
	Y	Depth 4
	8 // 2	Depth 5
January—December Monthly In Situ Measurements:	9	Joephi 3
pH: 8 P pH units EC:	aiti /	May—September: Algae Collection for Chlorophyll a
DO: 5.81 mg/L SC: 1452 μS/cm	11	Reach Length (150 m if wetted width ≤ 10 m; 250 m
DO: Salinity: <u>6.73</u> ppt	"	if wetted width > 10 m):
Water Temp: 14.4 °C	12	Collection Device Quantity
Flow (from discharge measuremen t):efs	13	(sum # transects per Device)
	14	Rubber Delimiter (Area=12.6cm²)
Samples Collected (check box)	15	PVC Delimiter (Area=12.6cm²)
January—December Monthly Water:		Syringe Scrubber (Area=5.3cm²)
Total Phosphorus , Total Nitrogen, and Nitrate + Nitrite as	16/	
Nitrogen (unfiltered):	1/	Other (Area=)
Dissolved Phosphorus and Nitrogen (field filtered):	/18	Number of Transects Sampled (0-11)
May—September Dry Season Monthly Algae:	/19	Composite Volume (mL)
Chlorophyll <i>a</i> (filters—algae):		Chlorophyll a Volume
Sinoi Spirifica diguest	20	(use GF/F filter, 25 mL preferred volume)
		, , , , , , , , , , , , , , , , , , , ,

Ventura River Algae TMDL Field Data Sheet (Estuary) - Page 1 of 1

Ventura River Algae TMDL—Estuary Details

Site ID: TMDL-Est Event ID (Month Year): April 2002 Crew Members: SP. SC. EM	Date/Time: 04/13/2022 1120
Weather (circle one): Clear / Partly Cloudy / Overcast / Rainy / Foggy Direction of Tide: Ebb / Flood / Slack / N/A Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze / Wind Strength: Calm / Slight Breeze / Moderate Breeze / Strong Breeze / Wind Strength: Modes (e.g. homeless, wildlife, dogs, swimming/recreation):	Ocean Inlet (circle one): Open/ Restricted / Closed Time of Low Tide: 143 Time of High Tide: 20,47 indy / Strong Wind Wind Direction: Blowing From To
on Situ Measurements (Measure at Floating Macroalgae Quadrat 1, Transect 1	
Monthly (Jan—Dec): OH:	[Collect at Floating Macroalgae Quadrat 1, Transect 1] Monthly Water (Jan—Dec):

Photos: Doceanward Landward		47
Sample Latitude:	34,274694	
Sample Longitude	34.274694 -119.307447	

Vater Samples Collected (check box)	
Collect at Floating Macroalgae Quadrat 1, Transect	<u>1]</u>
Nonthly Water (Jan—Dec):	
litrogen, total and dissolved:	
hosphorus, total and dissolved:	
litrate + Nitrite as Nitrogen:	
- 1	

Innovative Solutions for Nature

June 21, 2021

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Ventura River AlgaeTMDL

Physis Project ID: 2001003-021

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 5/13/2021. A total of 10 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Total Phosphorus by SM 4500-P E
Total Kjeldahl Nitrogen (Field Filtered) by EPA 351.2
Total Kjeldahl Nitrogen by EPA 351.2
Total Dissolved Phosphorus by SM 4500-P E
Nitrite as N by SM 4500-NO2 B
Nitrate as N by SM 4500-NO3 E

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Rachel Hansen 714 602-5320 Extension 203 rachelhansen@physislabs.com

Innovative Solutions for Nature

PROJECT SAMPLE LIST

Rincon Consultants
Ventura River Algae TMDL

PHYSIS Project ID: 2001003-021

Total Samples: 10

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
86735	TMDL-R4	Total	5/12/2021	8:00	Samplewater	Not Specified
86736	TMDL-R4	Field Filtered	5/12/2021	8:00	Samplewater	Not Specified
86737	TMDL-R3	Total	5/12/2021	10:50	Samplewater	Not Specified
86738	TMDL-R3	Field Filtered	5/12/2021	10:50	Samplewater	Not Specified
86799	TMDL-R2	Total	5/13/2021	7:30	Samplewater	Not Specified
86800	TMDL-R2	Field Filtered	5/13/2021	7:30	Samplewater	Not Specified
86801	TMDL-R1	Total	5/13/2021	10:00	Samplewater	Not Specified
86802	TMDL-R1	Field Filtered	5/13/2021	10:00	Samplewater	Not Specified
86803	TMDL-Est	Total	5/13/2021	11:05	Samplewater	Not Specified
86804	TMDL-Est	Field Filtered	5/13/2021	11:05	Samplewater	Not Specified

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

innovative solutions for Nature

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

Innovative Solutions for Nature

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
Е	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRONNES, INC.

Innovative Solutions for Nature

PHYSIS Project ID: 2001003-021 **Client: Rincon Consultants**

Project: Ventura River Algae TMDL

			Con	ver	tion	alc					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 86735-R1	TMDL-R4 Total		Matrix: Sample	ewate	r		Sampled:	12-May-21	8:00	Received:	13-May-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.148	1	0.05	0.4	NA	J	C-56142	08-Jun-21	09-Jun-21
Total Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.02	NA		C-57120	02-Jun-21	03-Jun-21
Sample ID: 86736-R1	TMDL-R4 Field Filtered		Matrix: Sample	ewate	r		Sampled:	12-May-21	8:00	Received:	13-May-21
Nitrate as N	SM 4500-NO3 E	mg/L	0.907	1	0.01	0.02	NA		C-57131	13-May-21	08-Jun-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-57104	13-May-21	13-May-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-57120	02-Jun-21	03-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.181	1	0.05	0.4	NA	J	C-56142	08-Jun-21	09-Jun-21
Sample ID: 86737-R1	TMDL-R3 Total		Matrix: Sample	ewate	r		Sampled:	12-May-21	10:50	Received:	13-May-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.399	1	0.05	0.4	NA	J	C-56142	08-Jun-21	09-Jun-21
Total Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.02	NA		C-57120	02-Jun-21	03-Jun-21
	- 19	•									
Sample ID: 86738-R1	TMDL-R3 Field Filtered		Matrix: Sample	ewate	r		Sampled:	12-May-21	10:50	Received:	13-May-21
Sample ID: 86738-R1 Nitrate as N		mg/L	Matrix: Sample	ewate	r 0.01	0.02	Sampled:	12-May-21	10:50 C-57131	Received:	13-May-21 08-Jun-21
Nitrate as N	TMDL-R3 Field Filtered	mg/L mg/L	<u> </u>			0.02	<u> </u>	12-May-21			
	TMDL-R3 Field Filtered SM 4500-NO3 E	•	0.39	1	0.01		NA	12-May-21	C-57131	13-May-21	08-Jun-21
Nitrate as N Nitrite as N	TMDL-R3 Field Filtered SM 4500-NO3 E SM 4500-NO2 B	mg/L	0.39 ND	1	0.01 0.01	0.02	NA NA	12-May-21	C-57131 C-57104	13-May-21 13-May-21	08-Jun-21 13-May-21
Nitrate as N Nitrite as N Total Dissolved Phosphorus	TMDL-R3 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E	mg/L mg/L	0.39 ND ND	1 1 1 1	0.01 0.01 0.016 0.05	0.02 0.03	NA NA NA	12-May-21	C-57131 C-57104 C-57120 C-56142	13-May-21 13-May-21 02-Jun-21	08-Jun-21 13-May-21 03-Jun-21
Nitrate as N Nitrite as N Total Dissolved Phosphorus Total Kjeldahl Nitrogen	TMDL-R3 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E EPA 351.2	mg/L mg/L	0.39 ND ND 0.426	1 1 1 1	0.01 0.01 0.016 0.05	0.02 0.03	NA NA NA NA		C-57131 C-57104 C-57120 C-56142	13-May-21 13-May-21 02-Jun-21 08-Jun-21	08-Jun-21 13-May-21 03-Jun-21 09-Jun-21

1904 E. Wright Circle, Anaheim CA 92806 fax: (714) 602-5321 info@physislabs.com main: (714) 602-5320 www.physislabs.com CA ELAP #2769 ar - 1 of 2

PHYSIS Project ID: 2001003-021 Client: Rincon Consultants

Project: Ventura River AlgaeTMDL

Innovative Solutions for Nature

			Con	ven	tion	als				
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Batch ID	Date Processed	Date Analyzed
Sample ID: 86800-R1	TMDL-R2 Field Filtered		Matrix: Sample	wate	r		Sampled:	13-May-21 7:30	Received:	14-May-21
Nitrate as N	SM 4500-NO3 E	mg/L	1.31	1	0.01	0.02	NA	C-57131	14-May-21	08-Jun-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA	C-57106	14-May-21	14-May-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0569	1	0.016	0.03	NA	C-57120	02-Jun-21	03-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	1.66	1	0.05	0.4	NA	C-56142	08-Jun-21	09-Jun-21
Sample ID: 86801-R1	TMDL-R1 Total		Matrix: Sample	ewate	r		Sampled:	13-May-21 10:00	Received:	14-May-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.522	1	0.05	0.4	NA	C-56142	08-Jun-21	09-Jun-21
Total Phosphorus	SM 4500-P E	mg/L	0.0429	1	0.016	0.02	NA	C-57120	02-Jun-21	03-Jun-21
Sample ID: 86802-R1	TMDL-R1 Field Filtered		Matrix: Sample	wate	r		Sampled:	13-May-21 10:00	Received:	14-May-21
Nitrate as N	SM 4500-NO3 E	mg/L	0.543	1	0.01	0.02	NA	C-57131	14-May-21	08-Jun-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA	C-57106	14-May-21	14-May-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0379	1	0.016	0.03	NA	C-57120	02-Jun-21	03-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.419	1	0.05	0.4	NA	C-56142	08-Jun-21	09-Jun-21
Sample ID: 86803-R1	TMDL-Est Total		Matrix: Sample	wate	r		Sampled:	13-May-21 11:05	Received:	14-May-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.496	1	0.05	0.4	NA	C-56142	08-Jun-21	09-Jun-21
Total Phosphorus	SM 4500-P E	mg/L	0.0479	1	0.016	0.02	NA	C-57120	02-Jun-21	03-Jun-21
Sample ID: 86804-R1	TMDL-Est Field Filtered		Matrix: Sample	ewate	r		Sampled:	13-May-21 11:05	Received:	14-May-21
Nitrate as N	SM 4500-NO3 E	mg/L	0.267	1	0.01	0.02	NA	C-57131	14-May-21	08-Jun-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA	C-57106	14-May-21	14-May-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA	C-57120	02-Jun-21	03-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.412	1	0.05	0.4	NA	C-56142	08-Jun-21	09-Jun-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 2 of 2

LITY CONTRO

TRATORIES, INC.

Innovative Solutions for Nature

PHYSIS Project ID: 2001003-021 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals

QUALITY CONTROL REPORT

	Conventio	onais						QUALITY CONTROL REPORT								
SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	A 0 %	CCURACY LIMITS	P %	RECISIOI LIMI			
Nitrate as N	!	Method:	SM 4500-NO)3 E	Fra	ction: N	NA .		Prep	ared:	13-May-21	Anal	yzed: o8-	Jun-21		
86733-B1	QAQC Procedural Blank	C-57131	ND	1	0.01	0.02	mg/L									
86733-BS1	QAQC Procedural Blank	C-57131	0.482	1	0.01	0.02	mg/L	0.5	0	96	68 - 135% PASS					
86733-BS2	QAQC Procedural Blank	C-57131	0.48	1	0.01	0.02	mg/L	0.5	0	96	68 - 135% PASS	0	25 PA	SS		
86802-MS1	TMDL-R1	C-57131	0.981	1	0.01	0.02	mg/L	0.5	0.543	88	80 - 120% PASS		25			
86802-MS2	TMDL-R1	C-57131	0.979	1	0.01	0.02	mg/L	0.5	0.543	87	80 - 120% PASS	1	25 PA	SS		
86802-R2	TMDL-R1	C-57131	0.543	1	0.01	0.02	mg/L					0	25 PA	SS		
Nitrite as N		Method:	SM 4500-NC)2 B	Fra	ction: N	NΑ		Prep	ared:	13-May-21	Anal	yzed: 13-	May-21		
86733-B1	QAQC Procedural Blank	C-57104	ND	1	0.01	0.02	mg/L									
86733-BS1	QAQC Procedural Blank	C-57104	0.0481	1	0.01	0.02	mg/L	0.05	0	96	49 - 120% PASS					
86733-BS2	QAQC Procedural Blank	C-57104	0.0484	1	0.01	0.02	mg/L	0.05	0	97	49 - 120% PASS	1	25 PA	SS		
86736-MS1	TMDL-R4	C-57104	0.0486	1	0.01	0.02	mg/L	0.05	0	97	80 - 120% PASS		25			
86736-MS2	TMDL-R4	C-57104	0.0485	1	0.01	0.02	mg/L	0.05	0	97	80 - 120% PASS	0	25 PA	SS		
86736-R2	TMDL-R4	C-57104	ND	1	0.01	0.02	mg/L					0	25 PA	SS		
86733-B1	QAQC Procedural Blank	C-57106	ND	1	0.01	0.02	mg/L									
86733-BS1	QAQC Procedural Blank	C-57106	0.0485	1	0.01	0.02	mg/L	0.05	0	97	49 - 120% PASS					
86733-BS2	QAQC Procedural Blank	C-57106	0.0488	1	0.01	0.02	mg/L	0.05	0	98	49 - 120% PASS	0	25 PA	SS		
86800-MS1	TMDL-R2	C-57106	0.0509	1	0.01	0.02	mg/L	0.05	0	102	80 - 120% PASS		25			
86800-MS2	TMDL-R2	C-57106	0.0515	1	0.01	0.02	mg/L	0.05	0	103	80 - 120% PASS	1	25 PA	SS		
86800-R2	TMDL-R2	C-57106	ND	1	0.01	0.02	mg/L					0	25 PA	SS		
Total Dissol	ved Phosphorus	Method:	SM 4500-P I	Ē	Fra	ction: N	NA .		Prep	ared:	02-Jun-21	Anal	yzed: 03-	Jun-21		

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 1 of 3

Innovative Solutions for Nature

PHYSIS Project ID: 2001003-021 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals QUALITY CONTROL REPORT

SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	CURACY LIMITS	PF %	ECISION LIMITS	QA CODE
86733-B1	QAQC Procedural Blank	C-57120	ND	1	0.016	0.03	mg/L							
86733-BS1	QAQC Procedural Blank	C-57120	0.292	1	0.016	0.03	mg/L	0.3	0	97	86 - 118% PASS			
86733-BS2	QAQC Procedural Blank	C-57120	0.296	1	0.016	0.03	mg/L	0.3	0	99	86 - 118% PASS	2	25 PASS	
86736-MS1	TMDL-R4	C-57120	0.281	1	0.016	0.03	mg/L	0.3	0	94	80 - 120% PASS		25	
86736-MS2	TMDL-R4	C-57120	0.282	1	0.016	0.03	mg/L	0.3	0	94	80 - 120% PASS	0	25 PASS	
86736-R2	TMDL-R4	C-57120	ND	1	0.016	0.03	mg/L					0	25 PASS	

Total Kjelda	hl Nitrogen	Method:	EPA 351.2		Frac	ction: N	Α		Prepared: 08-Jun-21			Analyzed: 09-Jun-21			
86733-B1	QAQC Procedural Blank	C-56142	ND	1	0.05	0.4	mg/L								
86733-BS1	QAQC Procedural Blank	C-56142	1.06	1	0.05	0.4	mg/L	1	0	106	90 - 110% PASS				
86733-BS2	QAQC Procedural Blank	C-56142	1.04	1	0.05	0.4	mg/L	1	0	104	90 - 110% PASS	2	30	PASS	
86734-CRM1	QAQC CRM – TKN QC1	C-56142	13	2	0.05	0.4	mg/L	12.5		104	73 - 122% PASS				
86735-MS1	TMDL-R4	C-56142	1.16	1	0.05	0.4	mg/L	1	0.148	101	90 - 110% PASS				
86735-MS2	TMDL-R4	C-56142	1.14	1	0.05	0.4	mg/L	1	0.148	99	90 - 110% PASS	2	30	PASS	
86735-R2	TMDL-R4	C-56142	0.134	1	0.05	0.4	mg/L					10	30	PASS	J
86736-MS1	TMDL-R4	C-56142	1.15	1	0.05	0.4	mg/L	1	0.181	97	90 - 110% PASS				
86736-MS2	TMDL-R4	C-56142	1.14	1	0.05	0.4	mg/L	1	0.181	96	90 - 110% PASS	1	30	PASS	
86736-R2	TMDL-R4	C-56142	0.165	1	0.05	0.4	mg/L					9	30	PASS	J

Total Phos	phorus	Method:	SM 4500-P E		Fra	ction: N	Α		Prepared: 02-Jun-21			Analyzed: 03-Jun-21			
86733-B1	QAQC Procedural Blank	C-57120	ND	1	0.016	0.02	mg/L								
86733-BS1	QAQC Procedural Blank	C-57120	0.292	1	0.016	0.02	mg/L	0.3	0	97	73 - 131% PASS				
86733-BS2	QAQC Procedural Blank	C-57120	0.296	1	0.016	0.02	mg/L	0.3	0	99	73 - 131% PASS	2	25 PASS		

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 2 of 3

PHYSIS Project ID: 2001003-021 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

Conventionals					QUALITY CONTROL REPORT									
SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	A(CCURACY LIMITS	P %	RECISION LIMITS	QA CODE
86735-MS1	TMDL-R4	C-57120	0.292	1	0.016	0.02	mg/L	0.3	0	97	80 - 120% PASS		25	
86735-MS2	TMDL-R4	C-57120	0.293	1	0.016	0.02	mg/L	0.3	0	98	80 - 120% PASS	1	25 PASS	
86735-R2	TMDL-R4	C-57120	ND	1	0.016	0.02	mg/L					0	25 PASS	

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 3 of 3

CHAIN OF TERRA GUSTEO DA AURA ENVIRON ESTA DE LA CRIES, INC.

Innovative Solutions for Nature

From: Aquatic Bioassay (805) 643-5621 Company: PHYSIS Phone: To: (805) 643-2930 and Consulting Labs. Address: 1904 E Wright Circle Fax: 29 N. Olive St. Project ID: Ventura River Anaheim, CA 92806 Ventura, CA 93001 AlgaeTMDL Phone: (714) 335-5793 **ANALYSIS** Filtered (SM 4500 NO3 E / SM 4500 NO2 B) otal TKN (EPA 351.2) Dissolved TKN (EPA Phosphorous, Field Filtered (SM 4500-P Fotal Phosphorous SM 4500-P E) Vitrate / Nitrite, Volume/ Sample Date Matrix Reps Sample I.D. No. Time No. Dissolved 351.2) Comments 3-250 mL, pl; - TMDL-CL 3-250 mL, pl; 8.00 X X K 05/12/2021 K TMDL-R4 2-250 mL, gl. Water notedlected TMDL-SA 2-250 mL, gl. Water 3-250 mL, pl; 0:50 X X X 05/2/2021 TMDL-R3 2-250 mL, gl. Water 3-250 mL, pl; TMDL-R2 2-250 mL, gl. Water 2-250 mL, gl. TMDL-R1 Water 3-250 mL, pl; TMDL-Est 2-250 mL, gl. Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H2SO4; Email report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.co RELINQUISHED BY Name: Ashley Geonzelez **RECEIVED BY RELINQUISHED BY** Name: CHARIS SAMIA Name: Signature: Shally Polosik Signature: C. Jamis Signature: Date: 05/12/201 Date: 05/10/2021 Date: 5/13/21 Time: 9:20 Time: /345 Time: 1344 Date: Time:

Sample Receipt Summary

Project Iteration ID: 2001003-021

Rincon Consultants Client Name:

Ventura River Algae TMDL Project Name:

COC Page Number: 2 of 2

Bottle Label Color: Light Blue w/dot

1	
	7
1	1

 Da Ti Cl 	itials Received By:	Area Fast	• DRS
 Diamond Ti Cl Co 	ime Received: 5/13/21 ime Received: 9:20 lient Name: ABC ourier Information: (Please circle) Client UPS FedEx • GSO/GLS		• DRS
 Ti Cl Co 	ime Received: 9:20 lient Name: ABC ourier Information: (Please circle) Client UPS FedEx GSO/GLS		• DRS
5. Co	Client UPS FedEx • GSO/GLS		• DRS
	Client UPS FedEx • GSO/GLS		• DRS
:	FedEx • GSO/GLS		• DRS
:		- 0-4	
•	B10/8/8 B 1	 Ontrac 	 PAMS
	PHYSIS Driver:		
	i. Start Time:	iii. Total Mil	leage:
	ii. End Time:		of Pickups:
6. Co	ontainer Information: (Please put the # of con	ntainers or circle none)	
•	Styrofoam Cooler Styrofoam Cooler	 Boxes 	 None
	Carboy(s) •Carboy Trash Can(s)	Carboy Cap(s)	Other
7. W	hat type of ice was used: (Please circle any th	nat apply)	
	Wet Ice • Blue Ice •		 None
8. Ra	andomly Selected Samples Temperature (°C):	O-7 Used I/R Thermon	meter# 1
	itials Inspected By: RG H		
1 (OC(s) included and completely filled out	Ves	/ No
	Il sample containers arrived intact		/ No
	Il samples listed on COC(s) are present	// 1	/ No
	formation on containers consistent with infor		/ No
	orrect containers and volume for all analyses		/ No
	I samples received within method holding tim		/ No
	orrect preservation used for all analyses indicate		No.
8. N	ame of sampler included on COC(s)	Yes /	(No)
		Notes:	

From: Aquatic Bioassay (805) 643-5621 Company: PHYSIS Phone: To: and Consulting Labs. (805) 643-2930 Address: 1904 E Wright Circle Fax: Project ID: Ventura River 29 N. Olive St. Anaheim, CA 92806 Ventura, CA 93001 Phone: (714) 335-5793 AlgaeTMDL **ANALYSIS** Filtered (SM 4500 NO3 E / SM 4500 NO2 B) (III otal TKN (EPA 351.2) Vitrate / Nitrite, Field Dissolved TKN (EPA 351.2) Phosphorous, Field Filtered (SM 4500-P Fotal Phosphorous SM 4500-P E) Volume/ Sample Date Reps Sample I.D. No. Time Matrix No. Dissolved Comments 3-250 mL, pl; TMDL-CL 2-250 mL, gl. Water NOTSAMPLED TMDL-R4 2-250 mL, gl. Water 3-250 mL, pl; TMDL-SA 2-250 mL, gl. 3-250 mL, pl; TMDL-R3 2-250 mL, gl. Water 3-250 mL, pl; X 05/13/221 07:30 X TMDL-R2 2-250 mL, gl. Water 3-250 mL, pl; 11:00 * 15/13/2021 X X TMDL-R1 2-250 mL, gl. Water 3-250 mL, pl; X X X 1105 X 05/13/2021 TMDL-Est 2-250 mL, gl. Water Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H2SO4; Email report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.co RECEIVED BY **RELINQUISHED BY RELINQUISHED BY** RECEIVED BY Name: Shelly Palusik
Signature: Name: CHARLS SAMIA Name: Sorah Everett Signature: Sul M. Emth Name: Signature: C. Sami a Signature: Date: 05/13/21 Time: |337 p.M Date: Time: (330 Time: 9:20 Date: 05/14/2021 Time:

Sample Receipt Summary

Project Iteration ID: 2001003-021B

Client Name:

Rincon Consultants

Project Name:

Ventura River Algae TMDL

COC Page Number: 2 of 2

Bottle Label Color: Light Blue w/dot

	<u>fo</u>					
 Initials 	s Received By:	SE				
	Received: 5/1					
3. Time I	Received: 9:	20				
4. Client	Name: Aque	atic Bioassay and	Consulting	Labs		
	er Information: (
• Cl	ient	• (UPS)	•	Area Fast	• DRS	
• Fe	edEx	• GSO/GLS	•	Ontrac	PAMS	
• PI	HYSIS Driver:					
	i. Start Time	:		iii. Tota	al Mileage:	
	ii. End Time:			iv. Nun	nber of Pickups:	
6. Conta	iner Information	: (Please put the # of con	tainers or ci	rcle none)		
. 1	Cooler •	Styrofoam Cooler	•	Boxes	 None 	
•	Carboy(s) •	Carboy Trash Can(s)	•	Carboy Cap(s	• Other	
7. What	type of ice was u	used: (Please circle any th	at apply)			
• (We	t Ice)	Blue Ice •	Dry Ice	 Water 	• None	
8. Rando	mly Selected Sa	mples Temperature (°C):	-1.0	Used I/R The	rmometer # 1-1	
1. Initials						
mple Integri	nple containers	ompletely filled outarrived intact		<i>G</i>		
1. COC(s) 2. All san 3. All san) included and comple containers and ples listed on C	ompletely filled out arrived intact OC(s) are present			/ No / No	
1. COC(s 2. All san 3. All san 4. Inform) included and comple containers and comples listed on Containers and containers are containers.	ompletely filled out arrived intact OC(s) are present ners consistent with infor	mation on (/ No / No / No	
1. COC(s 2. All san 3. All san 4. Inform 5. Correc) included and comple containers and ples listed on Containers and containers and containers and	ompletely filled out arrived intact OC(s) are present ners consistent with infor d volume for all analyses i	mation on (/ No / No / No / No	
1. COC(s 2. All san 3. All san 4. Inform 5. Correc 6. All san) included and comple containers and poles listed on Containers and containers and mples received w	ompletely filled out	mation on (ndicated	COC(s)	/ No No / No / No / No	
1. COC(s; 2. All san 3. All san 4. Inform 5. Correc 6. All san 7. Correc) included and comple containers and ples listed on Containers and containers and mples received was to preservation under the containers and mples received was to preservation under the containers and the containers are containers and the containers and the containers are containers are containers are containers are containers are containers and the containers are cont	ompletely filled out arrived intact OC(s) are present ners consistent with infor d volume for all analyses i	mation on (ndicated	COC(s)	/ No / No / No / No / No / No	

July 15, 2021

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Ventura River Algae TMDL

Physis Project ID: 2001003-023

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 6/10/2021. A total of 10 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Total Phosphorus by SM 4500-P E
Total Kjeldahl Nitrogen (Field Filtered) by EPA 351.2
Total Kjeldahl Nitrogen by EPA 351.2
Total Dissolved Phosphorus by SM 4500-P E
Nitrite as N by SM 4500-NO2 B
Nitrate as N by SM 4500-NO3 E

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier 714 602-5320 Extension 202

mistymercier@physislabs.com

Innovative Solutions for Nature

PROJECT SAMPLE LIST

Rincon Consultants Ventura River Algae TMDL PHYSIS Project ID: 2001003-023

Total Samples: 10

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
87345	TMDL-R4	Total	6/9/2021	9:00	Samplewater	Not Specified
87346	TMDL-R4	Field Filtered	6/9/2021	9:00	Samplewater	Not Specified
87347	TMDL-R3	Total	6/9/2021	10:00	Samplewater	Not Specified
87348	TMDL-R3	Field Filtered	6/9/2021	10:00	Samplewater	Not Specified
87349	TMDL-R2	Total	6/9/2021	10:30	Samplewater	Not Specified
87350	TMDL-R2	Field Filtered	6/9/2021	10:30	Samplewater	Not Specified
87351	TMDL-R1	Total	6/9/2021	11:40	Samplewater	Not Specified
87352	TMDL-R1	Field Filtered	6/9/2021	11:40	Samplewater	Not Specified
87353	TMDL-Est	Total	6/9/2021	12:20	Samplewater	Not Specified
87354	TMDL-Est	Field Filtered	6/9/2021	12:20	Samplewater	Not Specified

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS ₂	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

Innovative Solutions for Nature

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRONNES, INC.

PHYSIS Project ID: 2001003-023 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ver	ition	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 87345-R1	TMDL-R4 Total		Matrix: Sample	wate	r		Sampled:	09-Jun-21	9:00	Received:	10-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.132	1	0.05	0.4	NA	J	C-56154	22-Jun-21	23-Jun-21
Total Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.02	NA		C-57142	15-Jun-21	16-Jun-21
Sample ID: 87346-R1	TMDL-R4 Field Filtered		Matrix: Sample	wate	r		Sampled:	09-Jun-21	9:00	Received:	10-Jun-21
Nitrate as N	SM 4500-NO3 E	mg/L	0.849	1	0.01	0.02	NA		C-57150	10-Jun-21	01-Jul-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-57132	10-Jun-21	10-Jun-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-57142	09-Jun-21	16-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.05	0.4	NA		C-56154	22-Jun-21	23-Jun-21
Sample ID: 87347-R1	TMDL-R3 Total		Matrix: Sample	wate	r		Sampled:	09-Jun-21	10:00	Received:	10-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.05	0.4	NA		C-56154	22-Jun-21	23-Jun-21
Total Phosphorus	SM 4500-P E	mg/L	0.0191	1	0.016	0.02	NA	J	C-57142	15-Jun-21	16-Jun-21
Sample ID: 87348-R1	TMDL-R3 Field Filtered		Matrix: Sample	wata			CII-	oo lun a	10.00	Received:	10-Jun-21
24p.c.27.275	I MDL-N3 I leiu i litereu		Matrix. Sample	wate	I		Sampled:	09-Jun-21	10.00	necentea.	10 Juli 21
Nitrate as N	SM 4500-NO3 E	mg/L	0.317	1	0.01	0.02	NA NA	09-3011-2	C-57150	10-Jun-21	01-Jul-21
		mg/L	·			0.02		09-3411-2			
Nitrate as N	SM 4500-NO3 E	ŭ	0.317	1	0.01		NA	J	C-57150	10-Jun-21	01-Jul-21
Nitrate as N Nitrite as N	SM 4500-NO3 E SM 4500-NO2 B	mg/L	0.317 ND	1	0.01 0.01	0.02	NA NA	•	C-57150 C-57132	10-Jun-21 10-Jun-21	01-Jul-21 10-Jun-21
Nitrate as N Nitrite as N Total Dissolved Phosphorus	SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E	mg/L mg/L	0.317 ND 0.0184	1 1 1 1	0.01 0.01 0.016 0.05	0.02 0.03	NA NA NA	•	C-57150 C-57132 C-57142 C-56154	10-Jun-21 10-Jun-21 09-Jun-21	01-Jul-21 10-Jun-21 16-Jun-21
Nitrate as N Nitrite as N Total Dissolved Phosphorus Total Kjeldahl Nitrogen	SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E EPA 351.2	mg/L mg/L	0.317 ND 0.0184 ND	1 1 1 1	0.01 0.01 0.016 0.05	0.02 0.03	NA NA NA NA	J	C-57150 C-57132 C-57142 C-56154	10-Jun-21 10-Jun-21 09-Jun-21 22-Jun-21	01-Jul-21 10-Jun-21 16-Jun-21 23-Jun-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 1 of 2

PHYSIS Project ID: 2001003-023 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ven	tion	als					
ANALYTE	Method	Units		DF			Fraction	OA CODE	Patch ID	Data Processed	Date Analyzed
ANALTIE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	BattiiiD	Date Processed	Date Analyzed
Sample ID: 87350-R1	TMDL-R2 Field Filtered		Matrix: Sample	ewate	r		Sampled:	09-Jun-21	10:30	Received:	10-Jun-21
Nitrate as N	SM 4500-NO3 E	mg/L	2.16	1	0.01	0.02	NA		C-57150	10-Jun-21	01-Jul-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-57132	10-Jun-21	10-Jun-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.108	1	0.016	0.03	NA		C-57142	09-Jun-21	16-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.442	1	0.05	0.4	NA		C-56154	22-Jun-21	23-Jun-21
Sample ID: 87351-R1	TMDL-R1 Total		Matrix: Sample	ewate	r		Sampled:	09-Jun-21	11:40	Received:	10-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.515	1	0.05	0.4	NA		C-56154	22-Jun-21	23-Jun-21
Total Phosphorus	SM 4500-P E	mg/L	0.0819	1	0.016	0.02	NA		C-57142	15-Jun-21	16-Jun-21
Sample ID: 87352-R1	TMDL-R1 Field Filtered		Matrix: Sample	ewate	r		Sampled:	09-Jun-21	11:40	Received:	10-Jun-21
Nitrate as N	SM 4500-NO3 E	mg/L	0.893	1	0.01	0.02	NA		C-57150	10-Jun-21	01-Jul-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-57132	10-Jun-21	10-Jun-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0562	1	0.016	0.03	NA		C-57142	09-Jun-21	16-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.433	1	0.05	0.4	NA		C-56154	22-Jun-21	23-Jun-21
Sample ID: 87353-R1	TMDL-Est Total		Matrix: Sample	ewate	r		Sampled:	09-Jun-21	12:20	Received:	10-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.472	1	0.05	0.4	NA		C-56154	22-Jun-21	23-Jun-21
Total Phosphorus	SM 4500-P E	mg/L	0.0524	1	0.016	0.02	NA		C-57142	15-Jun-21	16-Jun-21
Sample ID: 87354-R1	TMDL-Est Field Filtered		Matrix: Sample	ewate	r		Sampled:	09-Jun-21	12:20	Received:	10-Jun-21
Nitrate as N	SM 4500-NO3 E	mg/L	0.299	1	0.01	0.02	NA		C-57150	10-Jun-21	01-Jul-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-57132	10-Jun-21	10-Jun-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0286	1	0.016	0.03	NA	J	C-57142	09-Jun-21	16-Jun-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.38	1	0.05	0.4	NA	J	C-56154	22-Jun-21	23-Jun-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 2 of 2

LITY CONTRO

TRATORIES, INC.

PHYSIS Project ID: 2001003-023 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals

QUALITY CONTROL REPORT

	Conventio	niai3						QUALITY CONTROL REPORT							
SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	A 0 %	CCURACY LIMITS	P %	RECIS LI	ION IMITS	QA CODE
Nitrate as N		Method:	SM 4500-NO	O3 E	Fra	ction: N	IA		Prep	ared:	10-Jun-21	Anal	yzed:	01-Jul-2	I
87343-B1	QAQC Procedural Blank	C-57150	ND	1	0.01	0.02	mg/L								
87343-BS1	QAQC Procedural Blank	C-57150	0.451	1	0.01	0.02	mg/L	0.5	0	90	68 - 135% PASS				
87343-BS2	QAQC Procedural Blank	C-57150	0.451	1	0.01	0.02	mg/L	0.5	0	90	68 - 135% PASS	0	25	PASS	
87346-MS1	TMDL-R4	C-57150	1.24	1	0.01	0.02	mg/L	0.5	0.849	78	80 - 120% PASS		25		Q
87346-MS2	TMDL-R4	C-57150	1.25	1	0.01	0.02	mg/L	0.5	0.849	80	80 - 120% PASS	3	25	PASS	
87346-R2	TMDL-R4	C-57150	0.859	1	0.01	0.02	mg/L					1	25	PASS	
Nitrite as N		Method:	SM 4500-NO	O2 B	Fra	ction: N	IA		Prep	ared:	10-Jun-21	Anal	yzed:	10-Jun-2	:1
87343-B1	QAQC Procedural Blank	C-57132	ND	1	0.01	0.02	mg/L								
87343-BS1	QAQC Procedural Blank	C-57132	0.0493	1	0.01	0.02	mg/L	0.05	0	99	49 - 120% PASS				
87343-BS2	QAQC Procedural Blank	C-57132	0.0484	1	0.01	0.02	mg/L	0.05	0	97	49 - 120% PASS	2	25	PASS	
87346-MS1	TMDL-R4	C-57132	0.0474	1	0.01	0.02	mg/L	0.05	0	95	80 - 120% PASS		25		
87346-MS2	TMDL-R4	C-57132	0.0481	1	0.01	0.02	mg/L	0.05	0	96	80 - 120% PASS	1	25	PASS	
87346-R2	TMDL-R4	C-57132	ND	1	0.01	0.02	mg/L					0	25	PASS	
Total Dissol	ved Phosphorus	Method:	SM 4500-P I	E	Fra	ction: N	۱A		Prep	ared:	09-Jun-21	Anal	yzed:	16-Jun-2	:1
87343-B1	QAQC Procedural Blank	C-57142	ND	1	0.016	0.03	mg/L								
87343-BS1	QAQC Procedural Blank	C-57142	0.293	1	0.016	0.03	mg/L	0.3	0	98	86 - 118% PASS				
87343-BS2	QAQC Procedural Blank	C-57142	0.298	1	0.016	0.03	mg/L	0.3	0	99	86 - 118% PASS	1	25	PASS	
87348-MS1	TMDL-R3	C-57142	0.316	1	0.016	0.03	mg/L	0.3	0.0184	99	80 - 120% PASS		25		
87348-MS2	TMDL-R3	C-57142	0.32	1	0.016	0.03	mg/L	0.3	0.0184	101	80 - 120% PASS	2	25	PASS	
87348-R2	TMDL-R3	C-57142	ND	1	0.016	0.03	mg/L					14	25	PASS	
Total Kjelda	hl Nitrogen	Method:	EPA 351.2		Era	ction: N	JΔ		Dren	aradı	22-Jun-21	Anal	uzod.	23-Jun-2	

PHYSIS Project ID: 2001003-023

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals

QUALITY CONTROL REPORT

SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE		CURACY		RECISION	QA CODE
								LEVEL	RESULT	%	LIMITS	%	LIMITS	
87343-B1 (QAQC Procedural Blank	C-56154	ND	1	0.05	0.4	mg/L							
87343-BS1 (QAQC Procedural Blank	C-56154	1	1	0.05	0.4	mg/L	1	0	100	90 - 110% PASS			
87343-BS2 (QAQC Procedural Blank	C-56154	0.965	1	0.05	0.4	mg/L	1	0	96	90 - 110% PASS	4	30 PASS	
	QAQC CRM – TKN QC1	C-56154	12.9	2	0.05	0.4	mg/L	12.5		103	73 - 122% PASS			
87345-MS1	TMDL-R4	C-56154	1.01	1	0.05	0.4	mg/L	1	0.132	88	90 - 110% FAIL			М
87345-MS2	TMDL-R4	C-56154	0.905	1	0.05	0.4	mg/L	1	0.132	77	90 - 110% FAIL	13	30 PASS	М
87345-R2	TMDL-R4	C-56154	0.091	1	0.05	0.4	mg/L					37	30 FAIL	J,SL
87346-MS1	TMDL-R4	C-56154	0.99	1	0.05	0.4	mg/L	1	0	99	90 - 110% PASS			
87346-MS2	TMDL-R4	C-56154	1.01	1	0.05	0.4	mg/L	1	0	101	90 - 110% PASS	2	30 PASS	
87346-R2	TMDL-R4	C-56154	ND	1	0.05	0.4	mg/L					0	30 PASS	

Total Phos	phorus	Method	SM 4500-P E		Fra	ction: N	Α		Pre	pared:	15-Jun-21	Anal	/zed: 16-Jun-21
87343-B1	QAQC Procedural Blank	C-57142	ND	1	0.016	0.02	mg/L						
87343-BS1	QAQC Procedural Blank	C-57142	0.293	1	0.016	0.02	mg/L	0.3	0	98	73 - 131% PASS		
87343-BS2	QAQC Procedural Blank	C-57142	0.298	1	0.016	0.02	mg/L	0.3	0	99	73 - 131% PASS	1	25 PASS
87347-MS1	TMDL-R3	C-57142	0.335	1	0.016	0.02	mg/L	0.3	0.0191	105	80 - 120% PASS		25
87347-MS2	TMDL-R3	C-57142	0.339	1	0.016	0.02	mg/L	0.3	0.0191	107	80 - 120% PASS	2	25 PASS
87347-R2	TMDL-R3	C-57142	ND	1	0.016	0.02	mg/L					18	25 PASS

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 2 of 2

CHAIN OF TERRA GUSTEO DA AURA ENVIRON ESTA DE LA CRIES, INC.

Company: PHYSIS From: Aquatic Bioassay Phone: (805) 643-5621 To: and Consulting Labs. (805) 643-2930 Address: 1904 E Wright Circle Fax: 29 N. Olive St. Project ID: Ventura River Anaheim, CA 92806 Ventura, CA 93001 AlgaeTMDL Phone: (714) 335-5793 **ANALYSIS** Nitrate / Nitrite, Field Filtered (SM 4500 NO3 E / SM 4500 NO2 B) otal TKN (EPA 351.2) Dissolved TKN (EPA Filtered (SM 4500-P Total Phosphorous Volume/ Sample I.D. No. Sample Date Time Matrix Reps SM 4500-P No. Dissolved 351.2) Comments 3-250 mL, pl; TMDL-CL 2-250 mL, gl. Water 10 Sam 3-250 mL, pl; 06/09/2021 0900 TMDL-R4 2-250 mL, gl. Water 3-250 mL, pl; TMDL-SA 2-250 mL, gl. Water 3-250 mL, pl; 1000 TMDL-R3 Water 2-250 mL, gl. 3-250 mL, pl; 1030 TMDL-R2 2-250 mL, gl. Water 3-250 mL, pl; 1140 TMDL-R1 2-250 mL, gl. Water 3-250 mL, pl; 1220 **TMDL-Est** Water 2-250 mL, gl. Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H2SO4; Email report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.com **RELINQUISHED BY RELINQUISHED BY RECEIVED BY** Name: Shelly Palasile Name: Shelly Polasik Name: CHARIS SAMIA Signature: C. famia Signature: Signature Time: 1475 Date: 6/10/21 Date: 06/09/7/1/ Time: 1345 Date: 06/10/2011 Date: 06/09/21 Time: 0945

Sample Receipt Summary

Project Iteration ID: 2001003-023

Client Name: **Rincon Consultants**

Ventura River Algae TMDL Project Name:

COC Page Number: 2 of 2

Bottle Label Color: Yellow w/--

1			
	_	-	

4	ving Info	0011			
1.	Initials Received By: _				
2.	Date Received:	6/10/21			
3.	Time Received:	945			
4.	Client Name:				
5.	Courier Information:	(Please circle)			
	• Client	 UP5 		Area Fast	 DRS
	 FedEx 	 GSO/GLS 		Ontrac	PAM5
	 PHYSIS Driver: 	•			
	i. Start Time	e:		iii. Total M	lileage:
	ii. End Time:				er of Pickups:
6.	Container Information	n: (Please put the # of contain	ners or cire	cle none)	
	Cooler	Styrofoam Cooler	•	Boxes	• None
•	Carboy(s)	Carboy Trash Can(s)		Carboy Cap(s)	Other
7.		used: (Please circle any that a			Julei
		Control of the contro	y Ice	 Water 	a Non
8.		imples Temperature (°C):	_	Used I/R Therm	• Non
1. 2. 3. 4. 5.	All sample containers All samples listed on C Information on contai Correct containers and All samples received w Correct preservation u		tion on CC	OC(s)	/ No / No / No / No / No / No / No
			***************************************		/ (10)
		NI.	otes:		

August 13, 2021

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Ventura River Algae TMDL

Physis Project ID: 2001003-024

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 7/15/2021. A total of 12 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Total Phosphorus by SM 4500-P E
Total Kjeldahl Nitrogen (Field Filtered) by EPA 351.2
Total Kjeldahl Nitrogen by EPA 351.2
Total Dissolved Phosphorus by SM 4500-P E
Nitrite as N by SM 4500-NO2 B
Nitrate as N by SM 4500-NO3 E

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier 714 602-5320 Extension 202 mistymercier@physislabs.com

PROJECT SAMPLE LIST

Aquatic Bioassay & Consulting Laboratories, Inc. Ventura River Algae TMDL PHYSIS Project ID: 2001003-024 Total Samples: 12

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
88611	TMDL-R4	Total	7/14/2021	7:50	Samplewater	Not Specified
88612	TMDL-R4	Field Filtered	7/14/2021	7:50	Samplewater	Not Specified
88613	TMDL-R3	Total	7/14/2021	10:00	Samplewater	Not Specified
88614	TMDL-R3	Field Filtered	7/14/2021	10:00	Samplewater	Not Specified
88631	TMDL-R2	Total	7/15/2021	7:40	Samplewater	Not Specified
88632	TMDL-R2	Field Filtered	7/15/2021	7:40	Samplewater	Not Specified
88633	TMDL-R1	Total	7/15/2021	10:25	Samplewater	Not Specified
88634	TMDL-R1	Field Filtered	7/15/2021	10:25	Samplewater	Not Specified
88635	TMDL-Est	Total	7/15/2021	12:15	Samplewater	Not Specified
88636	TMDL-Est	Field Filtered	7/15/2021	12:15	Samplewater	Not Specified
88637	TMDL-R2DUP	Total	7/15/2021	7:40	Samplewater	Not Specified
88638	TMDL-R2DUP	Field Filtered	7/15/2021	7:40	Samplewater	Not Specified

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS ₂	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
Е	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRONNES, INC.

PHYSIS Project ID: 2001003-024

Client: Aquatic Bioassay & Consulting Laboratories, Inc.

Project: Ventura River Algae TMDL

			Con	ver	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 88611-R1	TMDL-R4 Total		Matrix: Sample	ewate	r		Sampled:	14-Jul-21	7:50	Received:	15-Jul-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61008	20-Jul-21	21-Jul-21
Total Phosphorus	SM 4500-P E	mg/L	0.0215	1	0.016	0.02	NA		C-62023	27-Jul-21	30-Jul-21
Sample ID: 88612-R1	TMDL-R4 Field Filtered		Matrix: Sample	ewate	r		Sampled:	14-Jul-21	7:50	Received:	15-Jul-21
Nitrate as N	SM 4500-NO3 E	mg/L	1.29	1	0.01	0.02	NA		C-62027	15-Jul-21	10-Aug-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-62009	15-Jul-21	15-Jul-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-62023	27-Jul-21	30-Jul-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61008	20-Jul-21	21-Jul-21
Sample ID: 88613-R1	TMDL-R3 Total		Matrix: Sample	wate	r		Sampled:	14-Jul-21	10.00	Received:	15-Jul-21
Junipie 121 222.5 111	TWIDE NO TOTAL		Macrix. Jampic	vvacc	•		Jampica.	14-Jui-21	10.00	Received.	15-341-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.154	1	0.13	0.4	NA NA	J	C-61008	20-Jul-21	21-Jul-21
		mg/L mg/L				0.4					
Total Kjeldahl Nitrogen	EPA 351.2	_	0.154	1	0.13 0.016		NA		C-61008 C-62023	20-Jul-21	21-Jul-21
Total Kjeldahl Nitrogen Total Phosphorus	EPA 351.2 SM 4500-P E	_	0.154 0.0291	1	0.13 0.016		NA NA	J	C-61008 C-62023	20-Jul-21 27-Jul-21	21-Jul-21 30-Jul-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 88614-R1	EPA 351.2 SM 4500-P E TMDL-R3 Field Filtered	mg/L	0.154 0.0291 Matrix: Sample	1	0.13 0.016	0.02	NA NA Sampled:	J	C-61008 C-62023	20-Jul-21 27-Jul-21 Received:	21-Jul-21 30-Jul-21 15-Jul-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 88614-R1 Nitrate as N	EPA 351.2 SM 4500-P E TMDL-R3 Field Filtered SM 4500-NO3 E	mg/L	0.154 0.0291 Matrix: Sample 0.0909	1 1 ewate 1	0.13 0.016 r 0.01	0.02	NA NA Sampled:	J	C-61008 C-62023 10:00 C-62027	20-Jul-21 27-Jul-21 Received: 15-Jul-21	21-Jul-21 30-Jul-21 15-Jul-21 10-Aug-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 88614-R1 Nitrate as N Nitrite as N	EPA 351.2 SM 4500-P E TMDL-R3 Field Filtered SM 4500-NO3 E SM 4500-NO2 B	mg/L mg/L	0.154 0.0291 Matrix: Sample 0.0909 ND	1 1 ewate 1 1	0.13 0.016 r 0.01 0.01	0.02 0.02 0.02	NA NA Sampled: NA NA	J	C-61008 C-62023 10:00 C-62027 C-62009	20-Jul-21 27-Jul-21 Received: 15-Jul-21 15-Jul-21	21-Jul-21 30-Jul-21 15-Jul-21 10-Aug-21 15-Jul-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 88614-R1 Nitrate as N Nitrite as N Total Dissolved Phosphorus	EPA 351.2 SM 4500-P E TMDL-R3 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E	mg/L mg/L mg/L	0.154 0.0291 Matrix: Sample 0.0909 ND ND	1 1 ewate 1 1 1	0.13 0.016 r 0.01 0.01 0.016 0.13	0.02 0.02 0.02 0.03	NA NA Sampled: NA NA	14-Jul-21	C-61008 C-62023 10:00 C-62027 C-62009 C-62023 C-61008	20-Jul-21 27-Jul-21 Received: 15-Jul-21 15-Jul-21 27-Jul-21	21-Jul-21 30-Jul-21 15-Jul-21 10-Aug-21 15-Jul-21 30-Jul-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 88614-R1 Nitrate as N Nitrite as N Total Dissolved Phosphorus Total Kjeldahl Nitrogen	EPA 351.2 SM 4500-P E TMDL-R3 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E EPA 351.2	mg/L mg/L mg/L	0.154 0.0291 Matrix: Sample 0.0909 ND ND 0.137	1 1 ewate 1 1 1	0.13 0.016 r 0.01 0.01 0.016 0.13	0.02 0.02 0.02 0.03	NA NA Sampled: NA NA NA	J 14-Jul-21	C-61008 C-62023 10:00 C-62027 C-62009 C-62023 C-61008	20-Jul-21 27-Jul-21 Received: 15-Jul-21 15-Jul-21 27-Jul-21 20-Jul-21	21-Jul-21 30-Jul-21 15-Jul-21 10-Aug-21 15-Jul-21 30-Jul-21 21-Jul-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 1 of 3

PHYSIS Project ID: 2001003-024 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ven	tion	als				
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Batch ID	Date Processed	Date Analyzed
Sample ID: 88632-R1	TMDL-R2 Field Filtered		Matrix: Sample	ewate	r		Sampled:	15-Jul-21 7:40	Received:	16-Jul-21
Nitrate as N	SM 4500-NO3 E	mg/L	3.02	1	0.01	0.02	NA	C-62027	16-Jul-21	10-Aug-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA	C-62013	16-Jul-21	16-Jul-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.204	1	0.016	0.03	NA	C-62023	27-Jul-21	30-Jul-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.552	1	0.13	0.4	NA	C-61008	20-Jul-21	21-Jul-21
Sample ID: 88633-R1	TMDL-R1 Total		Matrix: Sample	ewate	r		Sampled:	15-Jul-21 10:25	Received:	16-Jul-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.579	1	0.13	0.4	NA	C-61008	20-Jul-21	21-Jul-21
Total Phosphorus	SM 4500-P E	mg/L	0.137	1	0.016	0.02	NA	C-62023	27-Jul-21	30-Jul-21
Sample ID: 88634-R1	TMDL-R1 Field Filtered		Matrix: Sample	ewate	r		Sampled:	15-Jul-21 10:25	Received:	16-Jul-21
Nitrate as N	SM 4500-NO3 E	mg/L	1.21	1	0.01	0.02	NA	C-62027	16-Jul-21	10-Aug-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA	C-62013	16-Jul-21	16-Jul-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0891	1	0.016	0.03	NA	C-62023	27-Jul-21	30-Jul-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.497	1	0.13	0.4	NA	C-61008	20-Jul-21	21-Jul-21
Sample ID: 88635-R1	TMDL-Est Total		Matrix: Sample	ewate	r		Sampled:	15-Jul-21 12:15	Received:	16-Jul-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.811	1	0.13	0.4	NA	C-61008	20-Jul-21	21-Jul-21
Total Phosphorus	SM 4500-P E	mg/L	0.0696	1	0.016	0.02	NA	C-62023	27-Jul-21	30-Jul-21
Sample ID: 88636-R1	TMDL-Est Field Filtered		Matrix: Sample	ewate	r		Sampled:	15-Jul-21 12:15	Received:	16-Jul-21
Nitrate as N	SM 4500-NO3 E	mg/L	ND	1	0.01	0.02	NA	C-62027	16-Jul-21	10-Aug-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA	C-62013	16-Jul-21	16-Jul-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0303	1	0.016	0.03	NA	C-62023	27-Jul-21	30-Jul-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.591	1	0.13	0.4	NA	C-61008	20-Jul-21	21-Jul-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 2 of 3

PHYSIS Project ID: 2001003-024

Client: Rincon Consultants

Project: Ventura River Algae TMDL

C-61008

20-Jul-21

21-Jul-21

Innovative Solutions for Nature

Total Kjeldahl Nitrogen

			Con	ven	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 88637-R1	TMDL-R2DUP Total		Matrix: Sampl	ewate	r		Sampled:	15-Jul-21	7:40	Received:	16-Jul-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.816	1	0.13	0.4	NA		C-61008	20-Jul-21	21-Jul-21
Total Phosphorus	SM 4500-P E	mg/L	0.328	1	0.016	0.02	NA		C-62023	27-Jul-21	30-Jul-21
Sample ID: 88638-R1	TMDL-R2DUP Field Filte	red	Matrix: Sampl	ewate	r		Sampled:	15-Jul-21	7:40	Received:	16-Jul-21
Nitrate as N	SM 4500-NO3 E	mg/L	2.9	1	0.01	0.02	NA		C-62027	16-Jul-21	10-Aug-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-62013	16-Jul-21	16-Jul-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.216	1	0.016	0.03	NA		C-62023	27-Jul-21	30-Jul-21

0.13

0.4

NA

mg/L

EPA 351.2

0.552

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 3 of 3

LITY CONTRO

TRATORIES, INC.

PHYSIS Project ID: 2001003-024

Client: Aquatic Bioassay & Consulting Laboratories, Inc.

Project: Ventura River Algae TMDL

Conventionals

QUALITY CONTROL REPORT

	Conventio	ilai3							QUA		CONTRO		-1 OIX1	
SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	A (CCURACY LIMITS	P %	RECISION LIMITS	QA CODE
Nitrate as N	I	Method:	SM 4500-NO)3 E	Fra	ction: N	NA .		Prep	ared:	16-Jul-21	Analy	zed: 10-Aug	g-21
88609-B1	QAQC Procedural Blank	C-62027	ND	1	0.01	0.02	mg/L							
88609-BS1	QAQC Procedural Blank	C-62027	0.513	1	0.01	0.02	mg/L	0.5	0	103	68 - 135% PASS			
88609-BS2	QAQC Procedural Blank	C-62027	0.496	1	0.01	0.02	mg/L	0.5	0	99	68 - 135% PASS	4	25 PASS	
88632-MS1	TMDL-R2	C-62027	3.61	1	0.01	0.02	mg/L	0.5	3.02	118	80 - 120% PASS		25	
88632-MS2	TMDL-R2	C-62027	3.51	1	0.01	0.02	mg/L	0.5	3.02	98	80 - 120% PASS	19	25 PASS	
88632-R2	TMDL-R2	C-62027	2.91	1	0.01	0.02	mg/L					4	25 PASS	
Nitrite as N		Method:	SM 4500-NC)2 B	Fra	ction: N	IA		Prep	ared:	15-Jul-21	Analy	zed: 15-Jul-	21
88609-B1	QAQC Procedural Blank	C-62009	ND	1	0.01	0.02	mg/L							
88609-BS1	QAQC Procedural Blank	C-62009	0.0483	1	0.01	0.02	mg/L	0.05	0	97	49 - 120% PASS			
88609-BS2	QAQC Procedural Blank	C-62009	0.0489	1	0.01	0.02	mg/L	0.05	0	98	49 - 120% PASS	2	25 PASS	
88612-MS1	TMDL-R4	C-62009	0.0477	1	0.01	0.02	mg/L	0.05	0	95	80 - 120% PASS		25	
88612-MS2	TMDL-R4	C-62009	0.0484	1	0.01	0.02	mg/L	0.05	0	97	80 - 120% PASS	2	25 PASS	
88612-R2	TMDL-R4	C-62009	ND	1	0.01	0.02	mg/L					0	25 PASS	
22895-B1	QAQC Procedural Blank	C-62013	ND	1	0.01	0.02	mg/L							
22895-BS1	QAQC Procedural Blank	C-62013	0.0473	1	0.01	0.02	mg/L	0.05	0	95	49 - 120% PASS			
22895-BS2	QAQC Procedural Blank	C-62013	0.0476	1	0.01	0.02	mg/L	0.05	0	95	49 - 120% PASS	0	25 PASS	
88632-MS1	TMDL-R2	C-62013	0.0513	1	0.01	0.02	mg/L	0.05	0	103	80 - 120% PASS		25	
88632-MS2	TMDL-R2	C-62013	0.0519	1	0.01	0.02	mg/L	0.05	0	104	80 - 120% PASS	1	25 PASS	
88632-R2	TMDL-R2	C-62013	ND	1	0.01	0.02	mg/L					0	25 PASS	
Total Dissol	ved Phosphorus	Method:	SM 4500-P I	Ē	Fra	ction: N	NA .		Prep	ared:	27-Jul-21	Analy	zed: 30-Jul	·21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 1 of 3

PHYSIS Project ID: 2001003-024

Client: Aquatic Bioassay & Consulting Laboratories, Inc.

Project: Ventura River Algae TMDL

Conventionals QUALITY CONTROL REPORT

SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	CURACY LIMITS	PI %	RECISION LIMITS	QA CODE
88609-B1	QAQC Procedural Blank	C-62023	ND	1	0.016	0.03	mg/L							
88609-BS1	QAQC Procedural Blank	C-62023	0.29	1	0.016	0.03	mg/L	0.3	0	97	86 - 118% PASS			
88609-BS2	QAQC Procedural Blank	C-62023	0.287	1	0.016	0.03	mg/L	0.3	0	96	86 - 118% PASS	1	25 PASS	
88612-MS1	TMDL-R4	C-62023	0.294	1	0.016	0.03	mg/L	0.3	0	98	80 - 120% PASS		25	
88612-MS2	TMDL-R4	C-62023	0.309	1	0.016	0.03	mg/L	0.3	0	103	80 - 120% PASS	5	25 PASS	
88612-R2	TMDL-R4	C-62023	ND	1	0.016	0.03	mg/L					0	25 PASS	

Total Kjelda	ıhl Nitrogen	Method:	EPA 351.2		Fra	ction: N	Α		Pre	pared:	20-Jul-21	Analy	/zed: 21-Jul-21	
88609-B1	QAQC Procedural Blank	C-61008	ND	1	0.13	0.4	mg/L							
88609-BS1	QAQC Procedural Blank	C-61008	1.04	1	0.13	0.4	mg/L	1	0	104	90 - 110% PASS			
88609-BS2	QAQC Procedural Blank	C-61008	1.04	1	0.13	0.4	mg/L	1	0	104	90 - 110% PASS	0	30 PASS	
88610-CRM1	QAQC CRM – TKN QC1	C-61008	13.2	2	0.13	0.4	mg/L	12.5		106	73 - 122% PASS			
88612-MS1	TMDL-R4	C-61008	1.11	1	0.13	0.4	mg/L	1	0	111	90 - 110% FAIL			М
88612-MS2	TMDL-R4	C-61008	1	1	0.13	0.4	mg/L	1	0	100	90 - 110% PASS	10	30 PASS	
88612-R2	TMDL-R4	C-61008	ND	1	0.13	0.4	mg/L					0	30 PASS	
88635-MS1	TMDL-Est	C-61008	1.88	1	0.13	0.4	mg/L	1	0.811	107	90 - 110% PASS			
88635-MS2	TMDL-Est	C-61008	1.82	1	0.13	0.4	mg/L	1	0.811	101	90 - 110% PASS	6	30 PASS	
88635-R2	TMDL-Est	C-61008	0.842	1	0.13	0.4	mg/L					4	30 PASS	

Total Phosp	ohorus	Method:	SM 4500-P E		Fra	ction: N	A		Pre	pared: :	27-Jul-21	Analyz	zed: 30-Jul-21
88609-B1	QAQC Procedural Blank	C-62023	ND	1	0.016	0.02	mg/L						
88609-BS1	QAQC Procedural Blank	C-62023	0.29	1	0.016	0.02	mg/L	0.3	0	97	73 - 131% PASS		
88609-BS2	QAQC Procedural Blank	C-62023	0.287	1	0.016	0.02	mg/L	0.3	0	96	73 - 131% PASS	1	25 PASS

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 2 of 3

PHYSIS Project ID: 2001003-024

Client: Aquatic Bioassay & Consulting Laboratories, Inc.

Project: Ventura River Algae TMDL

Conventionals QUALITY CONTROL REPORT

SAMPLE ID	BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	A (CCURACY LIMITS	P %	RECISION LIMITS	QA CODE
88611-MS1 TMDL-R4	C-62023	0.317	1	0.016	0.02	mg/L	0.3	0.0215	99	80 - 120% PASS		25	
88611-MS2 TMDL-R4	C-62023	0.314	1	0.016	0.02	mg/L	0.3	0.0215	98	80 - 120% PASS	0	25 PASS	
88611-R2 TMDL-R4	C-62023	ND	1	0.016	0.02	mg/L					29	25 PASS	SL,Q

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 3 of 3

CHAIN OF TERRA GUSTEO DA AURA ENVIRON ESTA DE LA CRIES, INC.

and Consul 29 N. Olive Ventura, CA	St.	Fax: Project ID:					Addres Phone:				
t t		7								ANALY	SIS
Sample I.D. No.	Sample Date	Time	Matrix	Volume/ No.	Reps	Nitrate / Nitrite, Field Filtered (SM 4500 NO3 E / SM 4500 NO2 B)	Total Phosphorous (SM 4500-P E)	Dissolved Phosphorous, Field Filtered (SM 4500-P E)	Total TKN (EPA 351.2)	Dissolved TKN (EPA 351.2)	Comments
-TMDL-CL			Water	3-250 mL, pl; 2-250 mL, gl.							
TMDL-R4	07/14/2028	0750	Water	3-250 mL, pl; 2-250 mL, gl.						- ~	
TMDL-SA			Water	3-250 mL, pl; 2-250 mL, gl.							
TMDL-R3	07/14/2021	1000	Water	3-250 mL, pl; 2-250 mL, gl.		/			1/	V	
-TMDL-R2			Water	3-250 mL, pl; 2-250 mL, gl.							_
TMDL-R1			Water	3-250 mL, pl; 2-250 mL, gl.							
TMDL-Est			Water	3-250 mL, pl; 2-250 mL, gl.							
Total/disa-l	vod phoor have	and total/di-		(NI		100 5					
					ed with I	1₂SO₄; Ema				ioassay	.com and kbrtalik@rinconconsulta
RELINQUIS e: Saffran Y		Name: 5/w Signature: 2	4			Name: \$	* H	QUISHED	BY		RECEIVED BY Name: Sarah Everett Signature: Sal M. Gant

Sample Receipt Summary

Receiving Info

Client Name: Project Name:

Project Iteration ID: 2001003-024

Rincon Consultants

Ventura River Algae TMDL

COC Page Number: 2 of 2

Bottle	Label	Color:	Blue	w/do

 Initials Received By: SE Date Received: 7 [15 2021 		
3. Time Received: 9:35		
4. Client Name: Aquatic Bioassay & C	onsulting Labs	
5. Courier Information: (Please circle)		
• Client • UPS	 Area Fast 	DRS
 FedEx GSO/GLS 	Ontrac	 PAMS
 PHYSIS Driver: 		
i. Start Time:	iii. Tota	l Mileage:
ii. End Time:		ber of Pickups:
6. Container Information: (Please put the # of conta		
• Cooler		None
 Carboy(s) Carboy Trash Can(s) 	• Carboy Cap(s)	Other
7. What type of ice was used: (Please circle any that	apply)	
Wet ice Blue ice D		 None
8. Randomly Selected Samples Temperature (°C):		
spection Info		
1. Initials Inspected By: R6H.		
mple Integrity Upon Receipt:		
		· ·
COC(s) included and completely filled out All completely are applied in the state of		
All sample containers arrived intact All samples listed on COC(s) are present.	Yes) / No
3. All samples listed on COC(s) are present4. Information on containers consistent with information.		
5. Correct containers and volume for all analyses ind		
6. All samples received within method holding time.		
 Correct preservation used for all analyses indicate 	7	, , .
Name of sampler included on COC(s)		
		7 (10)
	Votes:	

From: Aquatic Bioassay Phone: (805) 643-5621 Company: PHYSIS To: and Consulting Labs. (805) 643-2930 Fax: Address: 1904 E Wright Circle 29 N. Olive St. Project ID: Ventura River Anaheim, CA 92806 Ventura, CA 93001 Phone: (714) 335-5793 AlgaeTMDL **ANALYSIS** Nitrate / Nitrite, Field Filtered (SM 4500 NO3 E / SM 4500 NO2 B) otal TKN (EPA 351.2) Phosphorous, Field Filtered (SM 4500-P E) Dissolved TKN (EPA Fotal Phosphorous SM 4500-P E) Volume/ Sample I.D. No. Reps Sample Date Matrix **Time** No. Dissolved 351.2) Comments 3-250 mL, pl; TMDL-CL 2-250 mL, gl. Water 3-250 mL, pl; TMDL-R4 2-250 mL, gl. Water TMDL-SA 2-250 mL, gl. Water 3-250 mL. pl: TMDL-R3 Water 2-250 mL, gl. 3-250 mL, pl; X 071512021 07:46 X X TMDL-R2 2-250 mL, gl. Water 3-250 mL, pl; 17/15/20V 10:25 X TMDL-R1 2-250 mL, gl. Water 3-250 mL, pl; X X 17/15 Car 12:15 **TMDL-Est** 2-250 mL, gl. Water 3-250 76 pt THDL-RZDUPUT/15/2011 07:40 X Water 2-250Ma

Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H₂SO₄; Email report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.com

Name: Signature: Sold Minimum

Date: 7/15/21

Time: (340)

Name: Shelly Malasik

Signature: Date: 17/15/200 Time: 1346

RELINQUISHED BY

Time: 1346

Name: CHARIS SAMIA Signature: Chamia

Date: 07/15/21

RECEIVED BY

Name: Rey Spread

Date: 7-16-21

Time: 0940

Sample Receipt Summary

PHYSI	
ENVIRONMENTAL LABORATORIES, L	NE.

Rincon Consultants

Project Iteration ID: 2001003-024B

Client Name:

Project Name: Ventura River Algae TMDL COC Page Number: 2 of 2 Bottle Label Color: Blue w/dot **Receiving Info** 1. Initials Received By: 2. Date Received: 3. Time Received: 4. Client Name: 5. Courier Information: (Please circle) Client Area Fast DRS FedEx Ontrac **PAMS** PHYSIS Driver: i. Start Time: iii. Total Mileage: ii. End Time: iv. Number of Pickups: 6. Container Information: (Please put the # of containers or circle none) Cooler __ Styrofoam Cooler None ___ Carboy(s) __Carboy Trash Can(s) Carboy Cap(s) Other 7. What type of ice was used: (Please circle any that apply) Wet Ice Blue Ice Water None 8. Randomly Selected Samples Temperature (°C): Used I/R Thermometer # Inspection Info RGH 1. Initials Inspected By: Sample Integrity Upon Receipt: COC(s) included and completely filled out...... No 2. All sample containers arrived intact...... No No 4. Information on containers consistent with information on COC(s)...... No 5. Correct containers and volume for all analyses indicated...... No 6. All samples received within method holding time..... No No 8. Name of sampler included on COC(s)...... Yes Notes:

September 22, 2021

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Ventura River Algae TMDL

Physis Project ID: 2001003-026

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 8/12/2021. A total of 10 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Total Phosphorus by SM 4500-P E
Total Kjeldahl Nitrogen (Field Filtered) by EPA 351.2
Total Kjeldahl Nitrogen by EPA 351.2
Total Dissolved Phosphorus by SM 4500-P E
Nitrite as N by SM 4500-NO2 B
Nitrate as N by SM 4500-NO3 E

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier

714 602-5320

Extension 202

mistymercier@physislabs.com

PROJECT SAMPLE LIST

Rincon Consultants Ventura River Algae TMDL PHYSIS Project ID: 2001003-026

Total Samples: 10

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
89901	TMDL-R4	Total	8/11/2021	7:30	Samplewater	Not Specified
89902	TMDL-R4	Field Filtered	8/11/2021	7:30	Samplewater	Not Specified
89903	TMDL-R3	Total	8/11/2021	8:20	Samplewater	Not Specified
89904	TMDL-R3	Field Filtered	8/11/2021	8:20	Samplewater	Not Specified
89905	TMDL-R2	Total	8/11/2021	9:00	Samplewater	Not Specified
89906	TMDL-R2	Field Filtered	8/11/2021	9:00	Samplewater	Not Specified
89907	TMDL-R1	Total	8/11/2021	10:00	Samplewater	Not Specified
89908	TMDL-R1	Field Filtered	8/11/2021	10:00	Samplewater	Not Specified
89909	TMDL-Est	Total	8/11/2021	10:30	Samplewater	Not Specified
89910	TMDL-Est	Field Filtered	8/11/2021	10:30	Samplewater	Not Specified

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS ₂	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
Е	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
Ř	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRONNES, INC.

PHYSIS Project ID: 2001003-026

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ver	ition	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 89901-R1	TMDL-R4 Total		Matrix: Sample	ewate	r		Sampled:	11-Aug-21	7:30	Received:	12-Aug-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61014	31-Aug-21	01-Sep-21
Total Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.02	NA		C-62049	07-Sep-21	07-Sep-21
Sample ID: 89902-R1	TMDL-R4 Field Filtered		Matrix: Samplewater				Sampled:	11-Aug-21	7:30	Received:	12-Aug-21
Nitrate as N	SM 4500-NO3 E	mg/L	1.15	1	0.01	0.02	NA		C-62050	07-Sep-21	07-Sep-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-62034	12-Aug-21	12-Aug-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-62049	07-Sep-21	07-Sep-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61014	31-Aug-21	01-Sep-21
Sample ID: 89903-R1	TMDL-R3 Total		Matrix: Sample	ewate	r		Sampled:	11-Aug-21	8:20	Received:	12-Aug-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61014	31-Aug-21	01-Sep-21
Total Phosphorus	SM 4500-P E	mg/L	0.031	1	0.016	0.02	NA		C-62049	07-Sep-21	07-Sep-21
•	3111 4300 1 2	9/ =								0, 3cp 21	•
Sample ID: 89904-R1	TMDL-R3 Field Filtered		Matrix: Sample	ewate	r		Sampled:	11-Aug-21	8:20	Received:	12-Aug-21
Sample ID: 89904-R1 Nitrate as N		mg/L	Matrix: Sample	ewate	r 0.01	0.02	Sampled:	11-Aug-21	8:20 C-62050	· ·	· •
	TMDL-R3 Field Filtered		• • • • • • • • • • • • • • • • • • •			0.02 0.02		11-Aug-21		Received:	12-Aug-21
Nitrate as N	TMDL-R3 Field Filtered SM 4500-NO3 E	mg/L	0.0505	1	0.01		NA	11-Aug-21	C-62050	Received: 07-Sep-21	12-Aug-21 07-Sep-21
Nitrate as N Nitrite as N	TMDL-R3 Field Filtered SM 4500-NO3 E SM 4500-NO2 B	mg/L mg/L	0.0505 ND	1	0.01 0.01	0.02	NA NA	11-Aug-21	C-62050 C-62034	Received: 07-Sep-21 12-Aug-21	12-Aug-21 07-Sep-21 12-Aug-21
Nitrate as N Nitrite as N Total Dissolved Phosphorus	TMDL-R3 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E	mg/L mg/L mg/L	0.0505 ND ND	1 1 1 1	0.01 0.01 0.016 0.13	0.02 0.03	NA NA NA	11-Aug-21	C-62050 C-62034 C-62049 C-61014	Received: 07-Sep-21 12-Aug-21 07-Sep-21	12-Aug-21 07-Sep-21 12-Aug-21 07-Sep-21
Nitrate as N Nitrite as N Total Dissolved Phosphorus Total Kjeldahl Nitrogen	TMDL-R3 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E EPA 351.2	mg/L mg/L mg/L	0.0505 ND ND ND	1 1 1 1	0.01 0.01 0.016 0.13	0.02 0.03	NA NA NA NA		C-62050 C-62034 C-62049 C-61014	Received: 07-Sep-21 12-Aug-21 07-Sep-21 31-Aug-21	12-Aug-21 07-Sep-21 12-Aug-21 07-Sep-21 01-Sep-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 1 of 2

PHYSIS Project ID: 2001003-026

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ven	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Bat	tch ID	Date Processed	Date Analyzed
Sample ID: 89906-R1	TMDL-R2 Field Filtered		Matrix: Sample	wate	r		Sampled:	11-Aug-21 9:	:00	Received:	12-Aug-21
Nitrate as N	SM 4500-NO3 E	mg/L	1.6	1	0.01	0.02	NA	C-1	-62050	07-Sep-21	07-Sep-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA	C-	-62034	12-Aug-21	12-Aug-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0681	1	0.016	0.03	NA	C	62049	07-Sep-21	07-Sep-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.474	1	0.13	0.4	NA	C-	-61014	31-Aug-21	01-Sep-21
Sample ID: 89907-R1	TMDL-R1 Total		Matrix: Sample	wate	r		Sampled:	11-Aug-21 10:	:00	Received:	12-Aug-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.64	1	0.13	0.4	NA	C-	-61014	31-Aug-21	01-Sep-21
Total Phosphorus	SM 4500-P E	mg/L	0.0605	1	0.016	0.02	NA	C-	62049	07-Sep-21	07-Sep-21
Sample ID: 89908-R1	TMDL-R1 Field Filtered		Matrix: Sample	wate	r		Sampled:	11-Aug-21 10:	:00	Received:	12-Aug-21
Nitrate as N	SM 4500-NO3 E	mg/L	1.11	1	0.01	0.02	NA	C-1	-62050	07-Sep-21	07-Sep-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA	C-	-62034	12-Aug-21	12-Aug-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0615	1	0.016	0.03	NA	C-(62049	07-Sep-21	07-Sep-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.597	1	0.13	0.4	NA	C-	-61014	31-Aug-21	01-Sep-21
Sample ID: 89909-R1	TMDL-Est Total		Matrix: Sample	wate	r		Sampled:	11-Aug-21 10:	:30	Received:	12-Aug-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.537	1	0.13	0.4	NA	C-	-61014	31-Aug-21	01-Sep-21
Total Phosphorus	SM 4500-P E	mg/L	0.0539	1	0.016	0.02	NA	C-I	62049	07-Sep-21	07-Sep-21
Sample ID: 89910-R1	TMDL-Est Field Filtered		Matrix: Sample	wate	r		Sampled:	11-Aug-21 10:	:30	Received:	12-Aug-21
Nitrate as N	SM 4500-NO3 E	mg/L	0.258	1	0.01	0.02	NA	C-	-62050	07-Sep-21	07-Sep-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA	C-	-62034	12-Aug-21	12-Aug-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0401	1	0.016	0.03	NA	C-	62049	07-Sep-21	07-Sep-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.276	1	0.13	0.4	NA	J C-	-61014	31-Aug-21	01-Sep-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 2 of 2

LITY CONTRO

TRATORIES, INC.

PHYSIS Project ID: 2001003-026

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals

OUALITY CONTROL REPORT

	Conventio	iiais							qon		CONTINO			X I
SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	CURACY LIMITS	P %	RECISIO LIM	=
Nitrate as N		Method:	SM 4500-NC)3 E	Fra	ction: N	IA		Prep	ared:	07-Sep-21	Analy	zed: 07	-Sep-21
89899-B1	QAQC Procedural Blank	C-62050	ND	1	0.01	0.02	mg/L							
89899-BS1	QAQC Procedural Blank	C-62050	0.526	1	0.01	0.02	mg/L	0.5	0	105	68 - 135% PASS			
89899-BS2	QAQC Procedural Blank	C-62050	0.526	1	0.01	0.02	mg/L	0.5	0	105	68 - 135% PASS	0	25 PA	SS
89902-MS1	TMDL-R4	C-62050	1.66	1	0.01	0.02	mg/L	0.5	1.15	102	80 - 120% PASS		25	
89902-MS2	TMDL-R4	C-62050	1.67	1	0.01	0.02	mg/L	0.5	1.15	104	80 - 120% PASS	2	25 PA	SS
89902-R2	TMDL-R4	C-62050	1.13	1	0.01	0.02	mg/L					2	25 PA	ss
Nitrite as N		Method:	SM 4500-NC)2 B	Fra	ction: N	1A		Prep	ared:	12-Aug-21	Analy	zed: 12	Aug-21
89899-B1	QAQC Procedural Blank	C-62034	ND	1	0.01	0.02	mg/L							
89899-BS1	QAQC Procedural Blank	C-62034	0.0539	1	0.01	0.02	mg/L	0.05	0	108	49 - 120% PASS			
89899-BS2	QAQC Procedural Blank	C-62034	0.055	1	0.01	0.02	mg/L	0.05	0	110	49 - 120% PASS	2	25 PA	SS
89902-MS1	TMDL-R4	C-62034	0.0554	1	0.01	0.02	mg/L	0.05	0	111	80 - 120% PASS		25	
89902-MS2	TMDL-R4	C-62034	0.0557	1	0.01	0.02	mg/L	0.05	0	111	80 - 120% PASS	0	25 PA	SS
89902-R2	TMDL-R4	C-62034	ND	1	0.01	0.02	mg/L					0	25 PA	SS
Total Dissol	ved Phosphorus	Method:	SM 4500-P I		Fra	ction: N	۱A		Prep	ared:	07-Sep-21	Analy	zed: 07	-Sep-21
89899-B1	QAQC Procedural Blank	C-62049	ND	1	0.016	0.03	mg/L							
89899-BS1	QAQC Procedural Blank	C-62049	0.3	1	0.016	0.03	mg/L	0.3	0	100	86 - 118% PASS			
89899-BS2	QAQC Procedural Blank	C-62049	0.304	1	0.016	0.03	mg/L	0.3	0	101	86 - 118% PASS	1	25 PA	SS
89902-MS1	TMDL-R4	C-62049	0.306	1	0.016	0.03	mg/L	0.3	0	102	80 - 120% PASS		25	
89902-MS2	TMDL-R4	C-62049	0.305	1	0.016	0.03	mg/L	0.3	0	102	80 - 120% PASS	0	25 PA	SS
89902-R2	TMDL-R4	C-62049	ND	1	0.016	0.03	mg/L					0	25 PA	SS
Total Kjelda	hl Nitrogen	Method:	EPA 351.2		Fra	ction: N	NA .		Prep	ared:	31-Aug-21	Analy	zed: 01	-Sep-21

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

CA ELAP #2769

PHYSIS Project ID: 2001003-026

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals

QUALITY CONTROL REPORT

SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	CURACY	P1 %	RECISION LIMITS	QA CODE
22222 5.4	0.100 0 1 1 1 1 1	0.04044			0.40		,		KLSOLI	70	LIIVIIII	70	Liming	
89899-B1	QAQC Procedural Blank	C-61014	ND	1	0.13	0.4	mg/L							
89899-BS1	QAQC Procedural Blank	C-61014	0.936	1	0.13	0.4	mg/L	1	0	94	90 - 110% PASS			
89899-BS2	QAQC Procedural Blank	C-61014	0.996	1	0.13	0.4	mg/L	1	0	100	90 - 110% PASS	6	30 PASS	
89900-CRM1	QAQC CRM – TKN QC1	C-61014	13.4	2	0.13	0.4	mg/L	12.5		107	73 - 122% PASS			
89902-MS1	TMDL-R4	C-61014	1.06	1	0.13	0.4	mg/L	1	0	106	90 - 110% PASS			
89902-MS2	TMDL-R4	C-61014	1.04	1	0.13	0.4	mg/L	1	0	104	90 - 110% PASS	2	30 PASS	
89902-R2	TMDL-R4	C-61014	ND	1	0.13	0.4	mg/L					0	30 PASS	
89909-MS1	TMDL-Est	C-61014	1.35	1	0.13	0.4	mg/L	1	0.537	81	90 - 110% FAIL			М
89909-MS2	TMDL-Est	C-61014	1.32	1	0.13	0.4	mg/L	1	0.537	78	90 - 110% FAIL	4	30 PASS	М
89909-R2	TMDL-Est	C-61014	0.474	1	0.13	0.4	mg/L					12	30 PASS	

Total Phosp	ohorus	Method:	SM 4500-P E		Fra	ction: N	Α		Pre	pared: o	07-Sep-21	Analy	yzed: 07-Sep-21
89899-B1	QAQC Procedural Blank	C-62049	ND	1	0.016	0.02	mg/L						
89899-BS1	QAQC Procedural Blank	C-62049	0.3	1	0.016	0.02	mg/L	0.3	0	100	73 - 131% PASS		
89899-BS2	QAQC Procedural Blank	C-62049	0.304	1	0.016	0.02	mg/L	0.3	0	101	73 - 131% PASS	1	25 PASS
89901-MS1	TMDL-R4	C-62049	0.308	1	0.016	0.02	mg/L	0.3	0	103	80 - 120% PASS		25
89901-MS2	TMDL-R4	C-62049	0.319	1	0.016	0.02	mg/L	0.3	0	106	80 - 120% PASS	3	25 PASS
89901-R2	TMDL-R4	C-62049	ND	1	0.016	0.02	mg/L					0	25 PASS

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 2 of 2

CHAIN OF TERRA GUSTEO DA AURA ENVIRON ESTA DE LA CRIES, INC.

From: Aquatic Bioassay Phone: (805) 643-5621 Company: PHYSIS To: and Consulting Labs. Fax: (805) 643-2930 Address: 1904 E Wright Circle Project ID: Ventura River 29 N. Olive St. Anaheim, CA 92806 Ventura, CA 93001 Phone: (714) 335-5793 AlgaeTMDL **ANALYSIS** iltered (SM 4500 NO3 otal TKN (EPA 351.2) Vitrate / Nitrite, Field Dissolved TKN (EPA 351.2) Phosphorous, Field Filtered (SM 4500-P E / SM 4500 NO2 B) Total Phosphorous Volume/ 4500-P E) Sample I.D. No. Sample Date Time Matrix Reps No. Dissolved SM Comments 3-250 mL, pl; TMDL-CL 2-250 mL, gl. Water 3-250 mL, pl; X 8/11/2021 07:30 X TMDL-R4 Water 2-250 mL, gl. 3-250 mL, pl; TMDL-SA 2-250 mL, gl. Water 3-250 mL, pl; 08:20 8/11/2021 TMDL-R3 2-250 mL, gl. Water 3-250 mL, pl; × 69:00 × 8/11/2021 TMDL-R2 2-250 mL, gl. Water 3-250 mL, pl; X 10:00 X 8/11/2021 TMDL-R1 2-250 mL, gl. Water 3-250 mL, pl; 8/11/2028 × 10:30 X **TMDL-Est** × 2-250 mL, gl. Water Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H₂SO4; Email report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.co RELINQUISHED BY RELINQUISHED BY (Physis) Name: Ashley Granzalez Name: Shelly Islask Name: Name: Signature: Signature: Signature Signature: Date: 9-11 Date: 8/11/1001 Time: 11550 Time: Time: 9:30 Date: Date: 8/11 Time:

Sample Receipt Summary

ample Receipt Summary	COC Page Number: 2 of 2
ceiving Info	Bottle Label Color: Light Blue
1. Initials Received By: AG	
2. Date Received: 8/11/21	
3. Time Received: 9:30	
4. Client Name: ABC	
5. Courier Information: (Please circle)	
• Client UPS	Area Fast DRS
FedEx GSO/GLS	21.0
PHYSIS Driver:	Ontrac PAMS
i. Start Time:	iii. Total Mileage:
ii. End Time:	
6. Container Information: (Please put the # of	
• Cooler • Styrofoam Coo	poler • Boxes • None
Carboy(s) Carboy Trash Carboy Trash Carboy Trash Carboy	
7. What type of ice was used: (Please circle are Wet Ice Blue Ice 8. Randomly Selected Samples Temperature (Dection Info 1. Initials Inspected By: 26 Image: Please circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Inspected By: 26 Image: Please Circle are Blue Ice 1. Initials Initials Inspected By: 27 Image: Please Circle are Blue Ice 1. Initials Initials Inspected By: 27 Image: Please Circle are Blue Ice 1. Initials Initials Inspected By: 27 Image: Please Ci	• Dry Ice • Water • None etc. (°C): 0-6 Used I/R Thermometer # 1
 COC(s) included and completely filled out All sample containers arrived intact All samples listed on COC(s) are present Information on containers consistent with i Correct containers and volume for all analyses. All samples received within method holding Correct preservation used for all analyses in Name of sampler included on COC(s) 	Yes / No No No No No No No No
 All sample containers arrived intact	lyses indicated
 All sample containers arrived intact	No (Yes / No ninformation on COC(s)
 All sample containers arrived intact	wes / No information on COC(s)
 All sample containers arrived intact	lyses indicated
 All sample containers arrived intact	No (Yes / No ninformation on COC(s)
 All sample containers arrived intact	wes / No information on COC(s)
 All sample containers arrived intact	wes / No information on COC(s)

Project Iteration ID: 2001003-026

Rincon Consultants

Ventura River Algae TMDL

Client Name:

Project Name:

November 03, 2021

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Rincon TMDL Physis Project ID: 2001003-029

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 11/2/2021. A total of 4 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals

Chlorophyll-a by SM 10300 C

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier 714 602-5320 Extension 202

mistymercier@physislabs.com

PROJECT SAMPLE LIST

Rincon Consultants

PHYSIS Project ID: 2001003-029

Rincon TMDL

Total Samples: 4

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
92186	TMDL-R3		9/9/2021	9:00	Biologic	Not Specified
92187	TMDL-R2		9/9/2021	7:40	Biologic	Not Specified
92188	TMDL-R1		9/9/2021	10:15	Biologic	Not Specified
92189	TMDL-EST		9/9/2021	11:15	Biologic	Not Specified

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRONNES, INC.

PHYSIS Project ID: 2001003-029

Client: Rincon Consultants

Project: Rincon TMDL

Conventionals

				Con	ven	tiona	ais					
ANALYTE		Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 92186-R1	TMDL-R3			Matrix: Biolog	ic			Sampled:	09-Sep-21	9:00	Received:	02-Nov-21
Chlorophyll-a	9	SM 10300 C	mg/m2	44.3	1	1	2	NA		C-62126	03-Nov-21	03-Nov-21
Sample ID: 92187-R1	TMDL-R2			Matrix: Biolog	ic			Sampled:	09-Sep-21	7:40	Received:	02-Nov-21
Chlorophyll-a	9	SM 10300 C	mg/m2	39.3	1	1	2	NA		C-62126	03-Nov-21	03-Nov-21
Sample ID: 92188-R1	TMDL-R1			Matrix: Biolog	ic			Sampled:	09-Sep-21	10:15	Received:	02-Nov-21
Chlorophyll-a	9	SM 10300 C	mg/m2	58.8	1	1	2	NA		C-62126	03-Nov-21	03-Nov-21
Sample ID: 92189-R1	TMDL-EST			Matrix: Biolog	ic			Sampled:	09-Sep-21	11:15	Received:	02-Nov-21
Chlorophyll-a	9	SM 10300 C	mg/m2	15.2	1	1	2	NA		C-62126	03-Nov-21	03-Nov-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 1 of 1

LITY CONTRO

TRATORIES, INC.

PHYSIS Project ID: 2001003-029

Client: Rincon Consultants

Project: Rincon TMDL

Conventionals

QUALITY CONTROL REPORT

SAMPLE ID	BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE	ACCU	RACY	PF	RECISION	QA CODE
							LEVEL	RESULT	%	LIMITS	%	LIMITS	

Chlorophyl	l-a	Method:	SM 10300 C		Frac	tion: N	IA		Prep	pared: 03-Nov-21	Analyzed: 03-Nov-21
92185-B1	QAQC Procedural Blank	C-62126	ND	1	1	2	mg/m2				
92185-BS1	QAQC Procedural Blank	C-62126	42.7	1	1	2	mg/m2	40.6	0	105 70 - 130% PASS	
92185-BS2	QAQC Procedural Blank	C-62126	41.7	1	1	2	mg/m2	40.6	0	103 70 - 130% PASS	2 30 PASS

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 1 of 1

CHAIN OF TERRA GUSTEO DA AURA ENVIRON ESTA DE LA CRIES, INC.

Chain of Custody

From: Aquatic Bioassay and Consulting Labs. 29 N. Olive St.

Phone: Fax:

(805) 643-5621 (805) 643-2930

Project ID: Rincon TMDL

To: Company: Physis Environmental

Address:

1904 East Wright Circle Anaheim, California 92806

									ANALYS	SIS	
Sample I.D. No.	Sample Date	Time	Matrix	Volume/ No.	Filter Volume (mL)	Composite Volume (mL)	Area (cm²)	Chl-a			
TMDL-R3	8-Sep-21	9:00	fw	1-petri	25	460	25	Х			
TMDL-R2	9-Sep-21	7:40	fw	1-petri	25	510	25	Х			
TMDL-R1	9-Sep-21	10:15	fw	1-petri	25	460	25	Х			
TMDL-EST	9-Sep-21	11:15	fw	1-petri	25	1000	1000	Х			
				· · · · · ·							
cial Instructions:	Please email rep Rush Sample.	Please in	voice t	Agustic A	Broassay	and Consulting	Labs.				
INQUISHED BY:	DATE: TIME:					RELINQUISHE		TIME: RE	CEIVED BY:	DATE:	TI

Sample Receipt Summary

Project Iteration ID: 2001003-029

Client Name:

Rincon Consultants

Project Name:

Rincon TMDL

COC Page Number: 2 of 2

Bottle	Label	Color:	NA

eceiving into		
1. Initials Received By:		
2. Date Received:		
3. Time Received: 9 20		
4. Client Name:		
5. Courier Information: (Please circle)		
• Client UPS	 Area Fast 	• DRS
FedEx GSO/GLS	Ontrac	 PAMS
PHYSIS Driver:		- 171113
i. Start Time:	iii. Total	Mileage:
ii. End Time:		ber of Pickups:
6. Container Information: (Please put the # of conta		oci oi rickaps.
	Boxes	• None
Carboy(s) Carboy Trash Can(s)		
7. What type of ice was used: (Please circle any that		other
L-	ry Ice • Water	a None
8. Randomly Selected Samples Temperature (°C):		• None mometer #
1. Initials Inspected By: Rb H		7
COC(s) included and completely filled out		
2. All sample containers arrived intact		
 All samples listed on COC(s) are present Information on containers consistent with inform 		
5. Correct containers and volume for all analyses inc		
All samples received within method holding time.		61
7. Correct preservation used for all analyses indicate	0	
8. Name of sampler included on COC(s)		1 160)
	Notes:	
	totos.	
0)		
Rush		

November 15, 2021

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Ventura River Algae TMDL

Physis Project ID: 2001003-028

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 10/15/2021. A total of 8 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Total Phosphorus by SM 4500-P E
Total Kjeldahl Nitrogen (Field Filtered) by EPA 351.2
Total Kjeldahl Nitrogen by EPA 351.2
Total Dissolved Phosphorus by SM 4500-P E
Nitrite as N by SM 4500-NO2 B
Nitrate as N by SM 4500-NO3 E

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Rachel Hansen 714 602-5320 Extension 203 rachelhansen@physislabs.com

PROJECT SAMPLE LIST

Rincon Consultants

PHYSIS Project ID: 2001003-028

Total Samples: 8

Ventura River Algae TMDL

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
91285	TMDL-R3	Total	10/14/202	8:25	Samplewater	Not Specified
91286	TMDL-R3	Field Filtered	10/14/202	8:25	Samplewater	Not Specified
91287	TMDL-R2	Total	10/14/202	8:55	Samplewater	Not Specified
91288	TMDL-R2	Field Filtered	10/14/202	8:55	Samplewater	Not Specified
91289	TMDL-R1	Total	10/14/202	9:40	Samplewater	Not Specified
91290	TMDL-R1	Field Filtered	10/14/202	9:40	Samplewater	Not Specified
91291	TMDL-Est	Total	10/14/202	10:10	Samplewater	Not Specified
91292	TMDL-Est	Field Filtered	10/14/202	10:10	Samplewater	Not Specified

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
Е	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRONNES, INC.

PHYSIS Project ID: 2001003-028

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ver	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 91285-R1	TMDL-R3 Total		Matrix: Sample	ewate	r		Sampled:	14-Oct-21	8:25	Received:	15-Oct-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61021	19-Oct-21	20-Oct-21
Total Phosphorus	SM 4500-P E	mg/L	0.031	1	0.016	0.02	NA		C-62100	19-Oct-21	19-Oct-21
Sample ID: 91286-R1	TMDL-R3 Field Filtered		Matrix: Sample	ewate	r		Sampled:	14-Oct-21	8:25	Received:	15-Oct-21
Nitrate as N	SM 4500-NO3 E	mg/L	0.0508	1	0.01	0.02	NA		C-62103	19-Oct-21	20-Oct-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-62092	15-Oct-21	15-Oct-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0305	1	0.016	0.03	NA		C-62100	19-Oct-21	19-Oct-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61021	19-Oct-21	20-Oct-21
Sample ID: 043 97 D4					_		Camandada	0 -1	0.==	Dagainad.	47 O-1 -4
Sample ID: 91287-R1	TMDL-R2 Total		Matrix: Sample	ewate	r		Sampled:	14-Oct-21	8:55	Received:	15-Oct-21
Total Kjeldahl Nitrogen	TMDL-R2 Total EPA 351.2	mg/L	0.579	ewate 1	0.13	0.4	NA NA	14-OCT-21	C-61021	19-Oct-21	15-OCT-21 20-Oct-21
		mg/L mg/L	<u> </u>			0.4 0.02		14-Oct-21			
Total Kjeldahl Nitrogen	EPA 351.2	Ū	0.579	1	0.13 0.016		NA	14-Oct-21	C-61021 C-62100	19-Oct-21	20-Oct-21
Total Kjeldahl Nitrogen Total Phosphorus	EPA 351.2 SM 4500-P E	Ū	0.579 0.151	1	0.13 0.016		NA NA		C-61021 C-62100	19-Oct-21	20-Oct-21 19-Oct-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 91288-R1	EPA 351.2 SM 4500-P E TMDL-R2 Field Filtered	mg/L	0.579 0.151 Matrix: Sample	1 1 ewate	0.13 0.016	0.02	NA NA Sampled:		C-61021 C-62100	19-Oct-21 19-Oct-21 Received:	20-Oct-21 19-Oct-21 15-Oct-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 91288-R1 Nitrate as N	EPA 351.2 SM 4500-P E TMDL-R2 Field Filtered SM 4500-NO3 E	mg/L	0.579 0.151 Matrix: Sample 2.57	1 1 ewate 1	0.13 0.016 r 0.01	0.02	NA NA Sampled:		C-61021 C-62100 8:55 C-62103	19-Oct-21 19-Oct-21 Received: 19-Oct-21	20-Oct-21 19-Oct-21 15-Oct-21 20-Oct-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 91288-R1 Nitrate as N Nitrite as N	EPA 351.2 SM 4500-P E TMDL-R2 Field Filtered SM 4500-NO3 E SM 4500-NO2 B	mg/L mg/L mg/L	0.579 0.151 Matrix: Sample 2.57	1 1 ewate 1 1	0.13 0.016 r 0.01 0.01	0.02 0.02 0.02	NA NA Sampled: NA NA		C-62100 8:55 C-62103 C-62092	19-Oct-21 19-Oct-21 Received: 19-Oct-21 15-Oct-21	20-Oct-21 19-Oct-21 15-Oct-21 20-Oct-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 91288-R1 Nitrate as N Nitrite as N Total Dissolved Phosphorus	EPA 351.2 SM 4500-P E TMDL-R2 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E	mg/L mg/L mg/L mg/L	0.579 0.151 Matrix: Sample 2.57 ND 0.0862	1 1 2ewate 1 1 1 1	0.13 0.016 r 0.01 0.01 0.016 0.13	0.02 0.02 0.02 0.03	NA NA Sampled: NA NA		C-61021 C-62100 8:55 C-62103 C-62092 C-62100 C-61021	19-Oct-21 19-Oct-21 Received: 19-Oct-21 15-Oct-21	20-Oct-21 19-Oct-21 15-Oct-21 20-Oct-21 15-Oct-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 91288-R1 Nitrate as N Nitrite as N Total Dissolved Phosphorus Total Kjeldahl Nitrogen	EPA 351.2 SM 4500-P E TMDL-R2 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E EPA 351.2	mg/L mg/L mg/L mg/L	0.579 0.151 Matrix: Sample 2.57 ND 0.0862 0.482	1 1 2ewate 1 1 1 1	0.13 0.016 r 0.01 0.01 0.016 0.13	0.02 0.02 0.02 0.03	NA NA Sampled: NA NA NA	14-Oct-21	C-61021 C-62100 8:55 C-62103 C-62092 C-62100 C-61021	19-Oct-21 19-Oct-21 19-Oct-21 15-Oct-21 19-Oct-21 19-Oct-21	20-Oct-21 19-Oct-21 15-Oct-21 20-Oct-21 15-Oct-21 19-Oct-21 20-Oct-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 1 of 2

PHYSIS Project ID: 2001003-028

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ver	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 91290-R1	TMDL-R1 Field Filtered		Matrix: Sample	ewate	r		Sampled:	14-Oct-21	9:40	Received:	15-Oct-21
Nitrate as N	SM 4500-NO3 E	mg/L	1.76	1	0.01	0.02	NA		C-62103	19-Oct-21	20-Oct-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-62092	15-Oct-21	15-Oct-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0512	1	0.016	0.03	NA		C-62100	19-Oct-21	19-Oct-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.367	1	0.13	0.4	NA	J	C-61021	19-Oct-21	20-Oct-21
Sample ID: 91291-R1	TMDL-Est Total		Matrix: Sample	ewate	r		Sampled:	14-Oct-21	10:10	Received:	15-Oct-21
Sample ID: 91291-R1 Total Kjeldahl Nitrogen	TMDL-Est Total EPA 351.2	mg/L	Matrix: Sample 0.486	ewate	r 0.13	0.4	Sampled:	14-Oct-21	10:10 C-61021	Received:	15-Oct-21 20-Oct-21
<u> </u>		mg/L mg/L	<u> </u>	ewate 1 1		0.4	<u> </u>	14-Oct-21			
Total Kjeldahl Nitrogen	EPA 351.2	•	0.486	1	0.13 0.016		NA	14-Oct-21	C-61021 C-62100	19-Oct-21	20-Oct-21
Total Kjeldahl Nitrogen Total Phosphorus	EPA 351.2 SM 4500-P E	•	0.486 0.0527	1	0.13 0.016		NA NA	•	C-61021 C-62100	19-Oct-21 19-Oct-21	20-Oct-21 19-Oct-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 91292-R1	EPA 351.2 SM 4500-P E TMDL-Est Field Filtered	mg/L	0.486 0.0527 Matrix: Sample	1	0.13 0.016 r	0.02	NA NA Sampled:	•	C-61021 C-62100	19-Oct-21 19-Oct-21 Received:	20-Oct-21 19-Oct-21 15-Oct-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 91292-R1 Nitrate as N	EPA 351.2 SM 4500-P E TMDL-Est Field Filtered SM 4500-NO3 E	mg/L	0.486 0.0527 Matrix: Sample 0.205	1 1 ewate	0.13 0.016 r 0.01	0.02	NA NA Sampled:	14-Oct-21	C-61021 C-62100 10:10 C-62103	19-Oct-21 19-Oct-21 Received: 19-Oct-21	20-Oct-21 19-Oct-21 15-Oct-21 20-Oct-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 2 of 2

LITY CONTRO

TRATORIES, INC.

Total Kjeldahl Nitrogen

PHYSIS Project ID: 2001003-028 Client: Rincon Consultants

Prepared: 19-Oct-21

Project: Ventura River Algae TMDL

Conventionals QUALITY CONTROL REPORT

	Conventio	niai3							QUA		CONTRO	LIXL	.1 OIV1	
SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	CURACY LIMITS	PF %	RECISION LIMITS	QA CODE
Nitrate as N	I	Method:	SM 4500-NC)3 E	Fra	ction: N	NΑ		Prep	ared:	19-Oct-21	Analy	zed: 20-0	ct-21
91283-B1	QAQC Procedural Blank	C-62103	ND	1	0.01	0.02	mg/L							
91283-BS1	QAQC Procedural Blank	C-62103	0.511	1	0.01	0.02	mg/L	0.5	0	102	68 - 135% PASS			
91283-BS2	QAQC Procedural Blank	C-62103	0.508	1	0.01	0.02	mg/L	0.5	0	102	68 - 135% PASS	0	25 PASS	
91288-MS1	TMDL-R2	C-62103	3.1	1	0.01	0.02	mg/L	0.5	2.57	106	80 - 120% PASS		25	
91288-MS2	TMDL-R2	C-62103	3.08	1	0.01	0.02	mg/L	0.5	2.57	102	80 - 120% PASS	4	25 PASS	
91288-R2	TMDL-R2	C-62103	2.6	1	0.01	0.02	mg/L					1	25 PASS	
Nitrite as N		Method:	SM 4500-NC)2 B	Fra	ction: N	NΑ		Prep	ared:	15-Oct-21	Analy	zed: 15-Oc	.t-21
91283-B1	QAQC Procedural Blank	C-62092	ND	1	0.01	0.02	mg/L							
91283-BS1	QAQC Procedural Blank	C-62092	0.0468	1	0.01	0.02	mg/L	0.05	0	94	49 - 120% PASS			
91283-BS2	QAQC Procedural Blank	C-62092	0.0476	1	0.01	0.02	mg/L	0.05	0	95	49 - 120% PASS	1	25 PASS	
91286-MS1	TMDL-R3	C-62092	0.0458	1	0.01	0.02	mg/L	0.05	0	92	80 - 120% PASS		25	
91286-MS2	TMDL-R3	C-62092	0.0462	1	0.01	0.02	mg/L	0.05	0	92	80 - 120% PASS	0	25 PASS	
91286-R2	TMDL-R3	C-62092	ND	1	0.01	0.02	mg/L					0	25 PASS	
Total Dissol	ved Phosphorus	Method:	SM 4500-P I	Ē	Fra	ction: N	NΑ		Prep	ared:	19-Oct-21	Analy	zed: 19-0c	:t-21
91283-B1	QAQC Procedural Blank	C-62100	ND	1	0.016	0.03	mg/L							
91283-BS1	QAQC Procedural Blank	C-62100	0.307	1	0.016	0.03	mg/L	0.3	0	102	86 - 118% PASS			
91283-BS2	QAQC Procedural Blank	C-62100	0.312	1	0.016	0.03	mg/L	0.3	0	104	86 - 118% PASS	2	25 PASS	
91286-MS1	TMDL-R3	C-62100	0.351	1	0.016	0.03	mg/L	0.3	0.0305	107	80 - 120% PASS		25	
91286-MS2	TMDL-R3	C-62100	0.337	1	0.016	0.03	mg/L	0.3	0.0305	102	80 - 120% PASS	5	25 PASS	
91286-R2	TMDL-R3	C-62100	0.0443	1	0.016	0.03	mg/L					37	25 FAIL	SL

Fraction: NA

Method: EPA 351.2

Analyzed: 20-Oct-21

PHYSIS Project ID: 2001003-028 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals

QUALITY CONTROL REPORT

SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	CURACY LIMITS	PR %	ECISION LIMITS	QA CODE
91283-B1	QAQC Procedural Blank	C-61021	ND	1	0.13	0.4	mg/L							
91283-BS1	QAQC Procedural Blank	C-61021	1.45	1	0.13	0.4	mg/L	1.5	0	97	90 - 110% PASS			
91283-BS2	QAQC Procedural Blank	C-61021	1.44	1	0.13	0.4	mg/L	1.5	0	96	90 - 110% PASS	1	30 PASS	
91284-CRM1	QAQC CRM – TKN QC1	C-61021	12	1	0.13	0.4	mg/L	12.5		96	73 - 122% PASS			
91286-MS1	TMDL-R3	C-61021	1.39	1	0.13	0.4	mg/L	1.5	0	93	90 - 110% PASS			
91286-MS2	TMDL-R3	C-61021	1.45	1	0.13	0.4	mg/L	1.5	0	97	90 - 110% PASS	4	30 PASS	
91286-R2	TMDL-R3	C-61021	ND	1	0.13	0.4	mg/L					0	30 PASS	
91291-MS1	TMDL-Est	C-61021	2.12	1	0.13	0.4	mg/L	1.5	0.486	109	90 - 110% PASS			
91291-MS2	TMDL-Est	C-61021	1.84	1	0.13	0.4	mg/L	1.5	0.486	90	90 - 110% PASS	19	30 PASS	
91291-R2	TMDL-Est	C-61021	0.426	1	0.13	0.4	mg/L					13	30 PASS	

Total Phosp	ohorus	Method	: SM 4500-P E		Fra	ction: N	IA		Pre	pared:	19-Oct-21	Analy	zed: 19-Oct-21
91283-B1	QAQC Procedural Blank	C-62100	ND	1	0.016	0.02	mg/L						
91283-BS1	QAQC Procedural Blank	C-62100	0.307	1	0.016	0.02	mg/L	0.3	0	102	73 - 131% PASS		
91283-BS2	QAQC Procedural Blank	C-62100	0.312	1	0.016	0.02	mg/L	0.3	0	104	73 - 131% PASS	2	25 PASS
91291-MS1	TMDL-Est	C-62100	0.349	1	0.016	0.02	mg/L	0.3	0.0527	99	80 - 120% PASS		25
91291-MS2	TMDL-Est	C-62100	0.351	1	0.016	0.02	mg/L	0.3	0.0527	99	80 - 120% PASS	0	25 PASS
91291-R2	TMDL-Est	C-62100	0.055	1	0.016	0.02	mg/L					4	25 PASS

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 2 of 2

CHAIN OF TERRA GUSTEO DA AURA ENVIRON ESTA DE LA CRIES, INC.

From: Aquatic Bioassay Phone: (805) 643-5621 To: Company: PHYSIS and Consulting Labs. Fax: (805) 643-2930 Address: 1904 E Wright Circle 29 N. Olive St. Project ID: Ventura River Anaheim, CA 92806 Ventura, CA 93001 AlgaeTMDL Phone: (714) 335-5793 **ANALYSIS** Nitrate / Nitrite, Field Filtered (SM 4500 NO3 E / SM 4500 NO2 B) 351.2) Phosphorous, Field Filtered (SM 4500-P E) Dissolved TKN (EPA 351.2) Fotal Phosphorous SM 4500-P E) otal TKN (EPA Volume/ Sample I.D. No. Sample Date Reps Time Matrix No. Dissolved Comments 3-250 mL, pl; TMDL-CL 2-250 mL gl 3-250 mL, pl; TMDL-R4 NOT COLECTED 2-250 mL, gl. Water 3-250 mL, pl; TMDL-SA 2-250 mL, gl. Water 3-250 mL, pl; 08:25 X 10/14/201 TMDL-R3 X Water 2-250 mL, gl. 3-250 mL, pl; 08:55 TMDL-R2 X X X 2-250 mL, gl. X 3-250 mL, pl: 09:40 (0/14 /2021 TMDL-R1 X X X 2-250 mL, gl. Water 3-250 mL, pl; 10/14/2021 1040 TMDL-Est X X 2-250 mL, gl. * Water X Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H2SO4; Email report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.co RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY Name: Shally Palasik Name Name: Signature: Signature: Signature: Date: 10-14-21 Date: 10/14/1001 Time: 11:00 Date: (0/15/21 Date: Time: Time: 9:35

100	OF THE	TO . 27	A 2	
	P Block	707	E I	
	30.0	- 10	29 H	
_	100 10	33.		
CMUTE	MINNEN	Tid. In hit his late		O La

Rincon Consultants

Project Iteration ID: 2001003-028

Client Name:

Project Name: Ventura River Algae TMDL COC Page Number: 2 of 2 Sample Receipt Summary Bottle Label Color: White w/dot Receiving Info 1. Initials Received By: 2. Date Received: 3. Time Received: 9:3 4. Client Name: ___ ABC 5. Courier Information: (Please circle) Client Area Fast DRS FedEx GSO/GLS Ontrac PAMS PHYSIS Driver: i. Start Time: iii. Total Mileage: ii. End Time: iv. Number of Pickups: 6. Container Information: (Please put the # of containers or circle none) • 2 Cooler __ Styrofoam Cooler None Carboy(s) __Carboy Trash Can(s) __ Carboy Cap(s) Other 7. What type of ice was used: (Please circle any that apply) Wet Ice Blue Ice Dry Ice Water None 8. Randomly Selected Samples Temperature (°C): — O. 4 Used I/R Thermometer # Inspection Info 1. Initials Inspected By: Sample Integrity Upon Receipt: 1. COC(s) included and completely filled out...... No All sample containers arrived intact...... No 4. Information on containers consistent with information on COC(s)...... No No No 7. Correct preservation used for all analyses indicated...... No 8. Name of sampler included on COC(s)...... Yes (No. Notes:

March 14, 2022

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Ventura River Algae TMDL

Physis Project ID: 2001003-030

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 11/11/2021. A total of 8 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Total Phosphorus by SM 4500-P E
Total Kjeldahl Nitrogen (Field Filtered) by EPA 351.2
Total Kjeldahl Nitrogen by EPA 351.2
Total Dissolved Phosphorus by SM 4500-P E
Nitrite as N by SM 4500-NO2 B
Nitrate as N by SM 4500-NO3 E

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Rachel Hansen 714 602-5320 Extension 203 rachelhansen@physislabs.com

PROJECT SAMPLE LIST

Rincon Consultants

PHYSIS Project ID: 2001003-030

Ventura River Algae TMDL

Total Samples: 8

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
92584	TMDL-R3	Total	11/10/202	8:50	Samplewater	Not Specified
92585	TMDL-R3	Field Filtered	11/10/202	8:50	Samplewater	Not Specified
92586	TMDL-R2	Total	11/10/202	9:35	Samplewater	Not Specified
92587	TMDL-R2	Field Filtered	11/10/202	9:35	Samplewater	Not Specified
92588	TMDL-R1	Total	11/10/202	10:25	Samplewater	Not Specified
92589	TMDL-R1	Field Filtered	11/10/202	10:25	Samplewater	Not Specified
92590	TMDL-Est	Total	11/10/202	11:10	Samplewater	Not Specified
92591	TMDL-Est	Field Filtered	11/10/202	11:10	Samplewater	Not Specified

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
Е	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRONNES, INC.

Innovative Solutions for Nature

PHYSIS Project ID: 2001003-030 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ven	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 92584-R1	TMDL-R3 Total		Matrix: Sample	ewate	r		Sampled:	10-Nov-21	8:50	Received:	11-Nov-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61034	01-Dec-21	02-Dec-21
Total Phosphorus	SM 4500-P E	mg/L	0.0279	1	0.016	0.02	NA		C-63007	06-Dec-21	07-Dec-21
Sample ID: 92585-R1 TMDL-R3 Field Filtered Matrix: Samplewater					Sampled:	10-Nov-21	8:50	Received:	11-Nov-21		
Nitrate as N	SM 4500-NO3 E	mg/L	0.35	10	0.01	0.02	NA		C-63062	07-Dec-21	07-Dec-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-62142	11-Nov-21	11-Nov-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-63009	08-Dec-21	09-Dec-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61034	01-Dec-21	02-Dec-21
Sample ID: 92586-R1	TMDL-R2 Total		Matrix: Sample	ewate	r		Sampled:	10-Nov-21	9:35	Received:	11-Nov-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.404	1	0.13	0.4	NA		C-61034	01-Dec-21	02-Dec-21
Total Phosphorus		"	0.047		0.040						
	SM 4500-P E	mg/L	0.047	1	0.016	0.02	NA		C-63007	06-Dec-21	07-Dec-21
Sample ID: 92587-R1	TMDL-R2 Field Filtered	mg/L	Matrix: Sample	•		0.02	Sampled:	10-Nov-21		o6-Dec-21 Received:	07-Dec-21 11-Nov-21
Sample ID: 92587-R1 Nitrate as N		mg/L		•		0.02		10-Nov-21			
	TMDL-R2 Field Filtered		Matrix: Sample	ewate	r		Sampled:	10-Nov-21	9:35	Received:	11-Nov-21
Nitrate as N	TMDL-R2 Field Filtered SM 4500-NO3 E	mg/L	Matrix: Sample	ewate	r 0.01	0.02	Sampled:	10-Nov-21	9:35 C-63062	Received: 07-Dec-21	11-Nov-21 07-Dec-21
Nitrate as N Nitrite as N	TMDL-R2 Field Filtered SM 4500-NO3 E SM 4500-NO2 B	mg/L mg/L	Matrix: Sample 2.71 ND	ewate 1 1	0.01 0.01	0.02	Sampled: NA NA	10-Nov-21	9:35 C-63062 C-62142	Received: 07-Dec-21 11-Nov-21	11-Nov-21 07-Dec-21 11-Nov-21
Nitrate as N Nitrite as N Total Dissolved Phosphorus	TMDL-R2 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E	mg/L mg/L mg/L	2.71 ND 0.0396	1 1 1 1	0.01 0.01 0.016 0.13	0.02 0.02 0.03	Sampled: NA NA NA	10-Nov-21	9:35 C-63062 C-62142 C-63009 C-61034	Received: 07-Dec-21 11-Nov-21 08-Dec-21	11-Nov-21 07-Dec-21 11-Nov-21 09-Dec-21
Nitrate as N Nitrite as N Total Dissolved Phosphorus Total Kjeldahl Nitrogen	TMDL-R2 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E EPA 351.2	mg/L mg/L mg/L	2.71 ND 0.0396 0.727	1 1 1 1	0.01 0.01 0.016 0.13	0.02 0.02 0.03	Sampled: NA NA NA NA		9:35 C-63062 C-62142 C-63009 C-61034	Received: 07-Dec-21 11-Nov-21 08-Dec-21 01-Dec-21	11-Nov-21 07-Dec-21 11-Nov-21 09-Dec-21 02-Dec-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 1 of 2

PHYSIS Project ID: 2001003-030

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ven	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 92589-R1	TMDL-R1 Field Filtered		Matrix: Sampl	ewate	r		Sampled:	10-Nov-21	10:25	Received:	11-Nov-21
Nitrate as N	SM 4500-NO3 E	mg/L	1.64	1	0.01	0.02	NA		C-63062	07-Dec-21	07-Dec-21
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-62142	11-Nov-21	11-Nov-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0313	1	0.016	0.03	NA		C-63009	08-Dec-21	09-Dec-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.346	1	0.13	0.4	NA	J	C-61034	01-Dec-21	02-Dec-21
Sample ID: 92590-R1	TMDL-Est Total		Matrix: Sampl	ewate	r		Sampled:	10-Nov-21	11:10	Received:	11-Nov-21
Sample ID: 92590-R1 Total Kjeldahl Nitrogen	TMDL-Est Total EPA 351.2	mg/L	Matrix: Sampl	ewate	o.13	0.4	Sampled:	10-Nov-21	11:10 C-61034	Received: 01-Dec-21	11-Nov-21 02-Dec-21
		mg/L mg/L				0.4	<u>.</u>				
Total Kjeldahl Nitrogen	EPA 351.2	_	0.364	1	0.13 0.016		NA		C-61034 C-63007	01-Dec-21	02-Dec-21
Total Kjeldahl Nitrogen Total Phosphorus	EPA 351.2 SM 4500-P E	_	0.364 0.037	1	0.13 0.016		NA NA	J	C-61034 C-63007	01-Dec-21 06-Dec-21	02-Dec-21 07-Dec-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 92591-R1	EPA 351.2 SM 4500-P E TMDL-Est Field Filtered	mg/L	0.364 0.037 Matrix: Sample	1 1 ewate	0.13 0.016	0.02	NA NA Sampled:	J	C-61034 C-63007	01-Dec-21 06-Dec-21 Received:	02-Dec-21 07-Dec-21 11-Nov-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 92591-R1 Nitrate as N	EPA 351.2 SM 4500-P E TMDL-Est Field Filtered SM 4500-NO3 E	mg/L	0.364 0.037 Matrix: Sample 0.414	1 1 ewate	0.13 0.016 r 0.01	0.02	NA NA Sampled:	J	C-63007 11:10 C-63062	01-Dec-21 06-Dec-21 Received: 07-Dec-21	02-Dec-21 07-Dec-21 11-Nov-21 07-Dec-21

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 2 of 2

LITY CONTRO

TRATORIES, INC.

Innovative Solutions for Nature

PHYSIS Project ID: 2001003-030 **Client: Rincon Consultants**

Project: Ventura River Algae TMDL

Conventionals

OLIVITY CONTROL DEDODT

BATCH ID	RESULT	DF	MDL									QUALITY CONTROL REPORT						
			MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	CURACY LIMITS	P %	RECISION LIMITS	QA CODE						
Method	d: SM 4500-N	03 E	Fra	ction: N	NA NA		Prep	ared:	07-Dec-21	Analy	/zed: 07-De	C-21						
ank C-63062	ND	1	0.01	0.02	mg/L													
ank C-63062	2.65	1	0.01	0.02	mg/L	2.5	0	106	68 - 135% PASS									
ank C-63062	2.72	1	0.01	0.02	mg/L	2.5	0	109	68 - 135% PASS	3	25 PASS							
C-63062	27.5	10	0.01	0.02	mg/L	25	0.35	109	80 - 120% PASS		25							
C-63062	27.9	10	0.01	0.02	mg/L	25	0.35	110	80 - 120% PASS	1	25 PASS							
C-63062	0.13	10	0.01	0.02	mg/L					92	25 FAIL	R						
Method	d: SM 4500-N	O2 B	Fra	ction: N	NA		Prep	ared:	11-Nov-21	Analy	/zed: 11-No	/-21						
ank C-62142	ND	1	0.01	0.02	mg/L													
ank C-62142	0.047	1	0.01	0.02	mg/L	0.05	0	94	49 - 120% PASS									
ank C-62142	0.0468	1	0.01	0.02	mg/L	0.05	0	94	49 - 120% PASS	0	25 PASS							
Method	d: SM 4500-P	E	Fra	ction: N	NA		Prep	ared:	08-Dec-21	Analy	/zed: 09-De	C-21						
ank C-63009	ND	1	0.016	0.03	mg/L													
ank C-63009	0.296	1	0.016	0.03	mg/L	0.3	0	99	86 - 118% PASS									
ank C-63009	0.311	1	0.016	0.03	mg/L	0.3	0	104	86 - 118% PASS	5	25 PASS							
Method	d: EPA 351.2		Fra	ction: 1	NA		Prep	ared:	01-Dec-21	Analy	/zed: 02-De	C-21						
ank C-61034	ND	1	0.13	0.4	mg/L													
ank C-61034	2.44	1	0.13	0.4	mg/L	2.5	0	98	90 - 110% PASS									
ank C-61034	2.44	1	0.13	0.4	mg/L	2.5	0	98	90 - 110% PASS	0	30 PASS							
				0.4		40.5		00	70 4000/ DAGO									
	Method ank C-62142 Method ank C-63009 ank C-63009 Method ank C-61034 ank C-61034 ank C-61034	Method: SM 4500-P ank C-63009 ND ank C-63009 0.311 Method: EPA 351.2 ank C-61034 ND ank C-61034 2.44 ank C-61034 2.44	Ank C-62142 0.047 1 Ank C-62142 0.0468 1 Method: SM 4500-P E Ank C-63009 ND 1 Ank C-63009 0.296 1 Ank C-63009 0.311 1 Method: EPA 351.2 Ank C-61034 ND 1 Ank C-61034 2.44 1 Ank C-61034 2.44 1	Method: SM 4500-P E Fra ank C-63009 ND 1 0.016 ank C-63009 ND 1 0.016 ank C-63009 0.296 1 0.016 ank C-63009 0.311 1 0.016 Method: EPA 351.2 Fra ank C-61034 ND 1 0.13 ank C-61034 2.44 1 0.13 ank C-61034 2.44 1 0.13	Method: SM 4500-P E Fraction: N ank C-63009 ND 1 0.016 0.03 ank C-63009 ND 1 0.016 0.03 ank C-63009 0.296 1 0.016 0.03 ank C-63009 0.311 1 0.016 0.03 Method: EPA 351.2 Fraction: N ank C-61034 ND 1 0.13 0.4 ank C-61034 2.44 1 0.13 0.4 ank C-61034 2.44 1 0.13 0.4	Method: SM 4500-PE Fraction: NA Ank C-63009 ND 1 0.016 0.03 mg/L Ank C-63009 ND 1 0.016 0.03 mg/L Ank C-63009 0.296 1 0.016 0.03 mg/L Ank C-63009 0.311 1 0.016 0.03 mg/L Ank C-63009 0.311 1 0.016 0.03 mg/L Ank C-61034 ND 1 0.13 0.4 mg/L Ank C-61034 2.44 1 0.13 0.4 mg/L Ank C-61034 2.44 1 0.13 0.4 mg/L	Method: SM 4500-P E Fraction: NA ank C-63009 ND 1 0.016 0.03 mg/L 0.3 ank C-63009 ND 1 0.016 0.03 mg/L 0.3 ank C-63009 0.296 1 0.016 0.03 mg/L 0.3 ank C-63009 0.311 1 0.016 0.03 mg/L 0.3 Method: EPA 351.2 Fraction: NA ank C-61034 ND 1 0.13 0.4 mg/L 2.5 ank C-61034 2.44 1 0.13 0.4 mg/L 2.5 ank C-61034 2.44 1 0.13 0.4 mg/L 2.5	Ank C-62142 0.047 1 0.01 0.02 mg/L 0.05 0 Method: SM 4500-P E Fraction: NA Prepark C-63009 ND 1 0.016 0.03 mg/L 0.3 0 Ank C-63009 0.296 1 0.016 0.03 mg/L 0.3 0 Method: EPA 351.2 Fraction: NA Prepark C-61034 ND 1 0.13 0.4 mg/L Ank C-61034 2.44 1 0.13 0.4 mg/L 2.5 0 Ank C-61034 2.44 1 0.13 0.4 mg/L 2.5 0 Ank C-61034 2.44 1 0.13 0.4 mg/L 2.5 0	Method: SM 4500-P E Fraction: NA Prepared: ank C-63009 ND 1 0.016 0.03 mg/L 0.3 0 94 Ank C-63009 ND 1 0.016 0.03 mg/L 0.3 0 99 Ank C-63009 0.296 1 0.016 0.03 mg/L 0.3 0 99 Ank C-63009 0.311 1 0.016 0.03 mg/L 0.3 0 104 Method: EPA 351.2 Fraction: NA Prepared: Ank C-61034 ND 1 0.13 0.4 mg/L 2.5 0 98 Ank C-61034 2.44 1 0.13 0.4 mg/L 2.5 0 98 Ank C-61034 2.44 1 0.13 0.4 mg/L 2.5 0 98	Method: SM 4500-P E Fraction: NA Prepared: 08-Pec-21 ank C-63009 ND 1 0.016 0.03 mg/L 0.3 0 94 49 - 120% PASS Ank C-63009 ND 1 0.016 0.03 mg/L 0.3 0 99 86 - 118% PASS Ank C-63009 0.296 1 0.016 0.03 mg/L 0.3 0 99 86 - 118% PASS Ank C-63009 0.311 1 0.016 0.03 mg/L 0.3 0 104 86 - 118% PASS Ank C-61034 ND 1 0.13 0.4 mg/L 2.5 0 98 90 - 110% PASS Ank C-61034 2.44 1 0.13 0.4 mg/L 2.5 0 98 90 - 110% PASS Ank C-61034 2.44 1 0.13 0.4 mg/L 2.5	Ank C-62142 0.047 1 0.01 0.02 mg/L 0.05 0 94 49 - 120% PASS 0 ank C-62142 0.0468 1 0.01 0.02 mg/L 0.05 0 94 49 - 120% PASS 0 Method: SM 4500-PE Fraction: NA Prepared: 08-Dec-21 Analytic ank C-63009 ND 1 0.016 0.03 mg/L 0.3 0 99 86 - 118% PASS ank C-63009 0.311 1 0.016 0.03 mg/L 0.3 0 99 86 - 118% PASS 5 Method: EPA 351.2 Fraction: NA Prepared: 01-Dec-21 Analytic ank C-61034 ND 1 0.13 0.4 mg/L 2.5 0 98 90 - 110% PASS ank C-61034 2.44 1 0.13 0.4 mg/L 2.5 0 98 90 - 110% PASS 0	Ank C-62142 0.047 1 0.01 0.02 mg/L 0.05 0 94 49 - 120% PASS 0 25 PASS 0 0.0468 1 0.01 0.02 mg/L 0.05 0 94 49 - 120% PASS 0 25 PASS 0.00468 0.00468 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0 0.005 0 0.005 0 0 0 0						

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

PHYSIS Project ID: 2001003-030 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals

QUALITY CONTROL REPORT

SAMPLE II	D 575	BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	CURACY LIMITS	PR %	ECISION LIMITS	QA CODE
Total Phosp	horus	Method:	SM 4500-P E		Frac	tion: N	A		Prepa	red: o	6-Dec-21	Analyz	ed: 07-Dec-	21
92582-B1	QAQC Procedural Blank	C-63007	ND	1	0.016	0.02	mg/L							
92582-BS1	QAQC Procedural Blank	C-63007	0.3	1	0.016	0.02	mg/L	0.3	0	100	73 - 131% PASS			
92582-BS2	QAQC Procedural Blank	C-63007	0.305	1	0.016	0.02	mg/L	0.3	0	102	73 - 131% PASS	2	25 PASS	

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 2 of 2

CHAIN OF TERRA GUSTEO DA AURA ENVIRON ESTA DE LA CRIES, INC.

Innovative Solutions for Nature

From: Aquatic Bioassay (805) 643-5621 Company: PHYSIS Phone: To: and Consulting Labs. (805) 643-2930 Address: 1904 E Wright Circle Fax: Project ID: Ventura River Anaheim, CA 92806 29 N. Olive St. Ventura, CA 93001 Phone: (714) 335-5793 AlgaeTMDL **ANALYSIS** Filtered (SM 4500 NO3 otal TKN (EPA 351.2) Nitrate / Nitrite, Field Dissolved TKN (EPA 351.2) Phosphorous, Field Filtered (SM 4500-P E / SM 4500 NO2 B) Total Phosphorous (SM 4500-P E) Volume/ Matrix Sample I.D. No. Sample Date Time Reps No. Dissolved Comments 3-250 mL, pl: 2-250 mL, gl. TMDL-CL Water 3-250 mL, pl; NOT SAMPLED TMDL-R4 2-250 mL, gl. Water 2-250 mL, gl. TMDL-SA Water 3-250 mL, pl; 10/10/zorl 0850 TMDL-R3 Water 2-250 mL, gl. 3-250 mL, pl; X 11/10/2021 X 0935 TMDL-R2 2-250 mL, gl. Water 3-250 mL, pl; X Wortou 1025 TMDL-R1 2-250 mL, gl. Water 3-250 mL, pl; X 11:10 X 11/10/2021 X TMDL-Est 2-250 mL, gl. Water Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H2SO4; Email report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.co RELINQUISHED BY RELINQUISHED BY Name: Ashlas Name: Signature: Signature: Time:)236 Time: 1230 Time: 7:20 Date: 11/10/2021 Date: Time:

Project Iteration ID: 2001003-030

Client Name:

Rincon Consultants

Project Name:

Ventura River Algae TMDL

Sample Receipt Summary	COC Page Number: 2 of 2
1. Initials Received By: 16 2. Date Received: 1/11/21	Bottle Label Color: Orange w/—
3. Time Received: 9:20	
4. Client Name: ABC	
5. Courier Information: (Please circle)	
• Client • UPS	Area Fast DRS
FedEx GSO/GLS	
PHYSIS Driver:	Ontrac PAMS
	III Tatal Nationary
i. Start Time: ii. End Time:	
6. Container Information: (Please put the # of o	
Cooler Styrofoam Coole	
 Carboy(s) Carboy Trash Car What type of ice was used: (Please circle any 	
Randomly Selected Samples Temperature (°C Inspection Info Initials Inspected By:	• Dry Ice • Water • None C): Used I/R Thermometer #
Sample Integrity Upon Receipt:	
 COC(s) included and completely filled out All sample containers arrived intact All samples listed on COC(s) are present Information on containers consistent with in Correct containers and volume for all analyse All samples received within method holding Correct preservation used for all analyses inc Name of sampler included on COC(s) 	Yes
	Notes:
TKN bottles ((Total & Dissolved) for TMDL-R
and TMPL-R	.I were not preserved. We
preserved it at th	e lab.

March 14, 2022

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Ventura River Algae TMDL

Physis Project ID: 2001003-031

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 12/9/2021. A total of 8 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Total Phosphorus by SM 4500-P E
Total Kjeldahl Nitrogen (Field Filtered) by EPA 351.2
Total Kjeldahl Nitrogen by EPA 351.2
Total Dissolved Phosphorus by SM 4500-P E
Nitrite as N by SM 4500-NO2 B
Nitrate as N by SM 4500-NO3 E

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Rachel Hansen 714 602-5320 Extension 203 rachelhansen@physislabs.com

PROJECT SAMPLE LIST

Rincon Consultants

PHYSIS Project ID: 2001003-031

Total Samples: 8

Ventura River Algae TMDL

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
93067	TMDL-R3	Total	12/8/2021	9:12	Samplewater	Not Specified
93068	TMDL-R3	Field Filtered	12/8/2021	9:12	Samplewater	Not Specified
93069	TMDL-R2	Total	12/8/2021	9:53	Samplewater	Not Specified
93070	TMDL-R2	Field Filtered	12/8/2021	9:53	Samplewater	Not Specified
93071	TMDL-R1	Total	12/8/2021	10:48	Samplewater	Not Specified
93072	TMDL-R1	Field Filtered	12/8/2021	10:48	Samplewater	Not Specified
93073	TMDL-Est	Total	12/8/2021	11:29	Samplewater	Not Specified
93074	TMDL-Est	Field Filtered	12/8/2021	11:29	Samplewater	Not Specified

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
Е	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRONNES, INC.

Innovative Solutions for Nature

PHYSIS Project ID: 2001003-031 **Client: Rincon Consultants**

Project: Ventura River Algae TMDL

			Con	ven	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 93067-R1	TMDL-R3 Total		Matrix: Sample	ewate	r		Sampled:	08-Dec-21	9:12	Received:	09-Dec-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61039	03-Jan-22	04-Jan-22
Total Phosphorus	SM 4500-P E	mg/L	0.0225	1	0.016	0.02	NA		C-63012	10-Dec-21	13-Dec-21
Sample ID: 93068-R1	TMDL-R3 Field Filtered		Matrix: Sample	ewate	r		Sampled:	08-Dec-21	9:12	Received:	09-Dec-21
Nitrate as N	SM 4500-NO3 E	mg/L	0.47	10	0.01	0.02	NA		C-63062	04-Jan-22	04-Jan-22
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-63011	10-Dec-21	10-Dec-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.016	1	0.016	0.03	NA	J	C-63012	10-Dec-21	13-Dec-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61039	03-Jan-22	04-Jan-22
Sample ID: 93069-R1	TMDL-R2 Total		Matrice Cample		_		Camanlada	-0 D		D!	00 Doc 24
Janiple ID. 93009-III	TIMDL-N2 TOTAL		Matrix: Sample	ewate	ſ		Sampled:	08-Dec-21	9:53	Received:	09-Dec-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.838	1	0.13	0.4	NA NA	08-Dec-21	9:53 C-61039	o3-Jan-22	0 9-Dec-21 04-Jan-22
		mg/L	·			0.4 0.02		08-Dec-21	, ,,		
Total Kjeldahl Nitrogen	EPA 351.2	-	0.838	1	0.13 0.016		NA	08-Dec-21	C-61039 C-63012	03-Jan-22	04-Jan-22
Total Kjeldahl Nitrogen Total Phosphorus	EPA 351.2 SM 4500-P E	-	0.838 0.0427	1	0.13 0.016		NA NA		C-61039 C-63012	03-Jan-22 10-Dec-21	04-Jan-22 13-Dec-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 93070-R1	EPA 351.2 SM 4500-P E TMDL-R2 Field Filtered	mg/L	0.838 0.0427 Matrix: Sample	1 1 ewate	0.13 0.016	0.02	NA NA Sampled:		C-61039 C-63012	03-Jan-22 10-Dec-21 Received:	04-Jan-22 13-Dec-21 09-Dec-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 93070-R1 Nitrate as N	EPA 351.2 SM 4500-P E TMDL-R2 Field Filtered SM 4500-NO3 E	mg/L	0.838 0.0427 Matrix: Sample 2.53	1 1 ewate 1	0.13 0.016 r 0.01	0.02	NA NA Sampled:		C-63012 9:53 C-63062	03-Jan-22 10-Dec-21 Received: 04-Jan-22	04-Jan-22 13-Dec-21 09-Dec-21 04-Jan-22
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 93070-R1 Nitrate as N Nitrite as N	EPA 351.2 SM 4500-P E TMDL-R2 Field Filtered SM 4500-NO3 E SM 4500-NO2 B	mg/L mg/L	0.838 0.0427 Matrix: Sample 2.53	1 1 ewate 1	0.13 0.016 r 0.01 0.01	0.02 0.02 0.02	NA NA Sampled: NA NA		C-61039 C-63012 9:53 C-63062 C-63011	03-Jan-22 10-Dec-21 Received: 04-Jan-22 10-Dec-21	04-Jan-22 13-Dec-21 09-Dec-21 04-Jan-22 10-Dec-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 93070-R1 Nitrate as N Nitrite as N Total Dissolved Phosphorus	EPA 351.2 SM 4500-P E TMDL-R2 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E	mg/L mg/L mg/L	0.838 0.0427 Matrix: Sample 2.53 ND 0.0505	1 1 2ewate 1 1 1	0.13 0.016 r 0.01 0.01 0.016 0.13	0.02 0.02 0.02 0.03	NA NA Sampled: NA NA		C-61039 C-63012 9:53 C-63062 C-63011 C-63012 C-61039	03-Jan-22 10-Dec-21 Received: 04-Jan-22 10-Dec-21 10-Dec-21	04-Jan-22 13-Dec-21 09-Dec-21 04-Jan-22 10-Dec-21 13-Dec-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 93070-R1 Nitrate as N Nitrite as N Total Dissolved Phosphorus Total Kjeldahl Nitrogen	EPA 351.2 SM 4500-P E TMDL-R2 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E EPA 351.2	mg/L mg/L mg/L	0.838 0.0427 Matrix: Sample 2.53 ND 0.0505 0.54	1 1 2ewate 1 1 1	0.13 0.016 r 0.01 0.01 0.016 0.13	0.02 0.02 0.02 0.03	NA NA Sampled: NA NA NA	08-Dec-21	C-61039 C-63012 9:53 C-63062 C-63011 C-63012 C-61039	03-Jan-22 10-Dec-21 Received: 04-Jan-22 10-Dec-21 10-Dec-21 03-Jan-22	04-Jan-22 13-Dec-21 09-Dec-21 04-Jan-22 10-Dec-21 13-Dec-21 04-Jan-22

1904 E. Wright Circle, Anaheim CA 92806 fax: (714) 602-5321 main: (714) 602-5320 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 1 of 2

PHYSIS Project ID: 2001003-031 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ver	ntion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 93072-R1	TMDL-R1 Field Filtered		Matrix: Sample	ewate	r		Sampled:	08-Dec-21	10:48	Received:	09-Dec-21
Nitrate as N	SM 4500-NO3 E	mg/L	1.78	1	0.01	0.02	NA		C-63062	04-Jan-22	04-Jan-22
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-63011	10-Dec-21	10-Dec-21
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0315	1	0.016	0.03	NA		C-63012	10-Dec-21	13-Dec-21
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.563	1	0.13	0.4	NA		C-61039	03-Jan-22	04-Jan-22
Sample ID: 93073-R1	TMDL-Est Total		Matrix: Sample	ewate	r		Sampled:	08-Dec-21	11:29	Received:	09-Dec-21
Sample ID: 93073-R1 Total Kjeldahl Nitrogen	TMDL-Est Total EPA 351.2	mg/L	Matrix: Sample	ewate	0.13	0.4	Sampled:	08-Dec-21	11:29 C-61039	Received:	09-Dec-21 04-Jan-22
		mg/L mg/L	<u>.</u>	ewate 1		0.4		08-Dec-21			
Total Kjeldahl Nitrogen	EPA 351.2	_	0.641	1	0.13 0.016		NA	08-Dec-21	C-61039 C-63012	03-Jan-22	04-Jan-22
Total Kjeldahl Nitrogen Total Phosphorus	EPA 351.2 SM 4500-P E	_	0.641 ND	1	0.13 0.016		NA NA		C-61039 C-63012	03-Jan-22 10-Dec-21	04-Jan-22 13-Dec-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 93074-R1	EPA 351.2 SM 4500-P E TMDL-Est Field Filtered	mg/L	0.641 ND Matrix: Sample	1	0.13 0.016	0.02	NA NA Sampled:		C-61039 C-63012	03-Jan-22 10-Dec-21 Received:	04-Jan-22 13-Dec-21 09-Dec-21
Total Kjeldahl Nitrogen Total Phosphorus Sample ID: 93074-R1 Nitrate as N	EPA 351.2 SM 4500-P E TMDL-Est Field Filtered SM 4500-NO3 E	mg/L	0.641 ND Matrix: Sample	1	0.13 0.016 er 0.01	0.02	NA NA Sampled:	08-Dec-21	C-61039 C-63012 11:29 C-63062	03-Jan-22 10-Dec-21 Received: 04-Jan-22	04-Jan-22 13-Dec-21 09-Dec-21 04-Jan-22

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 2 of 2

LITY CONTRO

TRATORIES, INC.

Innovative Solutions for Nature

PHYSIS Project ID: 2001003-031 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals

QUALITY CONTROL REPORT

	Conventionals QUALITY CONTROL REPORT													
SAMPLE ID)	BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	A C %	CURACY LIMITS	P %	RECISION LIMITS	QA CODE
Nitrate as N	l	Method	SM 4500-NO	O3 E	Fra	ction: I	NA		Prep	ared:	04-Jan-22	Anal	yzed: 04-Ja	n-22
93065-B1	QAQC Procedural Blank	C-63062	ND	1	0.01	0.02	mg/L							
93065-BS1	QAQC Procedural Blank	C-63062	2.65	1	0.01	0.02	mg/L	2.5	0	106	68 - 135% PASS			
93065-BS2	QAQC Procedural Blank	C-63062	2.72	1	0.01	0.02	mg/L	2.5	0	109	68 - 135% PASS	3	25 PASS	
93068-MS1	TMDL-R3	C-63062	27.9	10	0.01	0.02	mg/L	25	0.47	110	80 - 120% PASS		25	
93068-MS2	TMDL-R3	C-63062	28.1	10	0.01	0.02	mg/L	25	0.47	111	80 - 120% PASS	1	25 PASS	
93068-R2	TMDL-R3	C-63062	0.36	10	0.01	0.02	mg/L					27	25 FAIL	Q
Nitrite as N		Method	SM 4500-NO	O2 B	Fra	ction: I	NA		Prep	ared:	10-Dec-21	Anal	yzed: 10-De	
93065-B1	QAQC Procedural Blank	C-63011	ND	1	0.01	0.02	mg/L							
93065-BS1	QAQC Procedural Blank	C-63011	0.046	1	0.01	0.02	mg/L	0.05	0	92	49 - 120% PASS			
93065-BS2	QAQC Procedural Blank	C-63011	0.0464	1	0.01	0.02	mg/L	0.05	0	93	49 - 120% PASS	1	25 PASS	
93068-MS1	TMDL-R3	C-63011	0.0436	1	0.01	0.02	mg/L	0.05	0	87	80 - 120% PASS		25	
93068-MS2	TMDL-R3	C-63011	0.0443	1	0.01	0.02	mg/L	0.05	0	89	80 - 120% PASS	2	25 PASS	
93068-R2	TMDL-R3	C-63011	ND	1	0.01	0.02	mg/L					0	25 PASS	
Total Disso	lved Phosphorus	Method	SM 4500-P	E	Fra	ction: I	NA		Prep	ared:	10-Dec-21	Anal	yzed: 13-De	:C-21
93065-B1	QAQC Procedural Blank	C-63012	ND	1	0.016	0.03	mg/L							
93065-BS1	QAQC Procedural Blank	C-63012	0.309	1	0.016	0.03	mg/L	0.3	0	103	86 - 118% PASS			
93065-BS2	QAQC Procedural Blank	C-63012	0.301	1	0.016	0.03	mg/L	0.3	0	100	86 - 118% PASS	3	25 PASS	
Total Kjelda	ahl Nitrogen	Method	EPA 351.2		Fra	ction: I	NA _		Prep	ared:	03-Jan-22	Anal	yzed: 04-Ja	in-22
93065-B1	QAQC Procedural Blank	C-61039	ND	1	0.13	0.4	mg/L			_				
93065-BS1	QAQC Procedural Blank	C-61039	2.44	1	0.13	0.4	mg/L	2.5	0	98	90 - 110% PASS			
93065-BS2	QAQC Procedural Blank	C-61039	2.43	1	0.13	0.4	mg/L	2.5	0	97	90 - 110% PASS	1	30 PASS	

PHYSIS Project ID: 2001003-031 Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

Conventionals QUALITY CONTROL REPORT

SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	CURACY LIMITS	PR %	ECISION LIMITS	QA CODE
93066-CRM1	QAQC CRM – TKN QC1	C-61039	12.6	2	0.13	0.4	mg/L	12.5		101	73 - 122% PASS			
93067-MS1	TMDL-R3	C-61039	2.7	1	0.13	0.4	mg/L	2.5	0	108	90 - 110% PASS			
93067-MS2	TMDL-R3	C-61039	2.75	1	0.13	0.4	mg/L	2.5	0	110	90 - 110% PASS	2	30 PASS	
93067-R2	TMDL-R3	C-61039	ND	1	0.13	0.4	mg/L					0	30 PASS	

Total Phosp	phorus	Method	: SM 4500-P E		Fra	ction: N	Α		Pre	pared:	10-Dec-21	Analy	/zed:	13-Dec-21	
93065-B1	QAQC Procedural Blank	C-63012	ND	1	0.016	0.02	mg/L								
93065-BS1	QAQC Procedural Blank	C-63012	0.309	1	0.016	0.02	mg/L	0.3	0	103	73 - 131% PASS				
93065-BS2	QAQC Procedural Blank	C-63012	0.301	1	0.016	0.02	mg/L	0.3	0	100	73 - 131% PASS	3	25	PASS	
93067-MS1	TMDL-R3	C-63012	0.321	1	0.016	0.02	mg/L	0.3	0.0225	99	80 - 120% PASS		25		
93067-MS2	TMDL-R3	C-63012	0.33	1	0.016	0.02	mg/L	0.3	0.0225	102	80 - 120% PASS	3	25	PASS	
93067-R2	TMDL-R3	C-63012	0.0355	1	0.016	0.02	mg/L					45	25	FAIL	SL

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 2 of 2

CHAIN OF TERRA GUSTEO DA AURA ENVIRON ESTA DE LA CRIES, INC.

Innovative Solutions for Nature

(805) 643-5621 Company: PHYSIS From: Aquatic Bioassay Phone: To: (805) 643-2930 Address: 1904 E Wright Circle and Consulting Labs. Fax: Project ID: Ventura River Anaheim, CA 92806 29 N. Olive St. Phone: (714) 335-5793 Ventura, CA 93001 AlgaeTMDL **ANALYSIS** Filtered (SM 4500 NO3 E / SM 4500 NO2 B) otal TKN (EPA 351.2) Nitrate / Nitrite, Field Dissolved TKN (EPA 351.2) Phosphorous, Field Filtered (SM 4500-P Total Phosphorous (SM 4500-P E) Volume/ Reps Time Matrix Sample I.D. No. Sample Date No. Dissolved Comments 3-250 mL. pl: DEX 2-250 mL, gl. TMDL-CL Dry 2-250 mL, gl. TMDL-R4 Water 3-250 mL, pl; Dry 2-250 mL, gl TMDL-SA Water 3-250 mL, pl; 9:12 12/08/21 TMDL-R3 2-250 mL, gl. Water 3-250 mL, pl; 12/08/21 9:53 2-250 mL, gl. TMDL-R2 Water 3-250 mL, pl; 12/08/21 10:48 TMDL-R1 2-250 mL, gl. Water 3-250 mL, pl; 1210821 11:29 2-250 mL, gl. TMDL-Est Water Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H₂SO₄; Email report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.co Name: Shelly Palasik **RECEIVED BY** RELINQUISHED BY **RELINQUISHED BY** Name: Ashley Gonzalez Signature: After y Name: CHARIS SAMIA Name: Schoon Hullinger Signature: Gmi Time: /326 Time: 9:30 Time: 12:26 Date: (2/08/2) Time: 12:26 Date: 12/08/21

Sample Receipt Summary

Sample Receipt Summary	COC Page Number: 2 of 2						
Receiving Info	Bottle Label Color: Purple						
 Initials Received By: AG Date Received: 12/9/21 							
 Time Received: 9:30 Client Name: ABC 							
5. Courier Information: (Please circle)							
• Client UPS	 Area Fast 	 DRS 					
FedEx GSO/GLS	 Ontrac 	PAMS					
 PHYSIS Driver: 							
i. Start Time:	iii. Total I	Mileage:					
ii. End Time:		er of Pickups:					
6. Container Information: (Please put the # of c							
• <u>L</u> Cooler •Styrofoam Coole		 None 					
 Carboy(s) Carboy Trash Car 	n(s) • Carboy Cap(s)	Other					
Wet Ice Blue Ice Randomly Selected Samples Temperature (°C) Inspection Info Initials Inspected By:	• Dry Ice • Water C): <u>- つ。 3</u> Used I/R Thern	• None nometer # <u> </u>					
Sample Integrity Upon Receipt:							
1. COC(s) included and completely filled out		/ No					
All sample containers arrived intact							
3. All samples listed on COC(s) are present	, and the second	/ No					
4. Information on containers consistent with in	formation on COC(s)	/ No					
Correct containers and volume for all analyse		/ No					
All samples received within method holding t	time	/ No					
Correct preservation used for all analyses ind		/ No					
8. Name of sampler included on COC(s)	Yes	/ M6)					
	Notes:						

Project Iteration ID: 2001003-031

Rincon Consultants

Ventura River Algae TMDL

Client Name:

Project Name:

March 17, 2022

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Ventura River Algae TMDL

Physis Project ID: 2001003-032

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 1/13/2022. A total of 14 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Total Phosphorus by SM 4500-P E
Total Kjeldahl Nitrogen (Field Filtered) by EPA 351.2
Total Kjeldahl Nitrogen by EPA 351.2
Total Dissolved Phosphorus by SM 4500-P E
Nitrite as N by SM 4500-NO2 B
Nitrate as N by SM 4500-NO3 E

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Rachel Hansen 714 602-5320 Extension 203 rachelhansen@physislabs.com

PROJECT SAMPLE LIST

Rincon Consultants
Ventura River Algae TMDL

PHYSIS Project ID: 2001003-032 Total Samples: 14

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
94897	TMDL-CL	Total	1/12/2022	7:17	Samplewater	Not Specified
94898	TMDL-CL	Field Filtered	1/12/2022	7:17	Samplewater	Not Specified
94899	TMDL-R4	Total	1/12/2022	8:11	Samplewater	Not Specified
94900	TMDL-R4	Field Filtered	1/12/2022	8:11	Samplewater	Not Specified
94901	TMDL-SA	Total	1/12/2022	8:46	Samplewater	Not Specified
94902	TMDL-SA	Field Filtered	1/12/2022	8:46	Samplewater	Not Specified
94903	TMDL-R3	Total	1/12/2022	9:38	Samplewater	Not Specified
94904	TMDL-R3	Field Filtered	1/12/2022	9:38	Samplewater	Not Specified
94905	TMDL-R2	Total	1/12/2022	10:27	Samplewater	Not Specified
94906	TMDL-R2	Field Filtered	1/12/2022	10:27	Samplewater	Not Specified
94907	TMDL-R1	Total	1/12/2022	11:31	Samplewater	Not Specified
94908	TMDL-R1	Field Filtered	1/12/2022	11:31	Samplewater	Not Specified
94909	TMDL-Est	Total	1/12/2022	12:19	Samplewater	Not Specified
94910	TMDL-Est	Field Filtered	1/12/2022	12:19	Samplewater	Not Specified

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R ₂	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS ₂	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R₁/R₂) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MD
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRONNES, INC.

Innovative Solutions for Nature

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ven	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 94897-R1	TMDL-CL Total		Matrix: Sample	wate	r		Sampled:	12-Jan-22	7:17	Received:	13-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	1.74	1	0.13	0.4	NA		C-61043	07-Mar-22	08-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.0341	1	0.016	0.02	NA		C-63052	26-Jan-22	26-Jan-22
Sample ID: 94898-R1	TMDL-CL Field Filtered		Matrix: Sample	wate	r		Sampled:	12-Jan-22	7:17	Received:	13-Jan-22
Nitrate as N	SM 4500-NO3 E	mg/L	1.47	10	0.01	0.02	NA		C-63062	08-Feb-22	08-Feb-22
Nitrite as N	SM 4500-NO2 B	mg/L	0.0212	1	0.01	0.02	NA		C-63046	13-Jan-22	13-Jan-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0386	1	0.016	0.03	NA		C-63052	26-Jan-22	26-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	1.56	1	0.13	0.4	NA		C-61043	07-Mar-22	08-Mar-22
Sample ID: 94899-R1	TMDL-R4 Total		Matrix: Sample	wate	r		Sampled:	12-Jan-22	8:11	Received:	13-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.211	1	0.13	0.4	NA	J	C-61043	07-Mar-22	08-Mar-22
										•	
Total Phosphorus	SM 4500-P E	mg/L	0.0305	1	0.016	0.02	NA		C-63052	26-Jan-22	26-Jan-22
Total Phosphorus Sample ID: 94900-R1	SM 4500-P E TMDL-R4 Field Filtered	mg/L	0.0305 Matrix: Sample	1 ewate		0.02	NA Sampled:	12-Jan-22		•	26-Jan-22 1 3-Jan-22
'		mg/L		1 ewate		0.02		12-Jan-22		26-Jan-22	
Sample ID: 94900-R1	TMDL-R4 Field Filtered		Matrix: Sample		r		Sampled:	12-Jan-22	8:11	26-Jan-22	13-Jan-22
Sample ID: 94900-R1 Nitrate as N	TMDL-R4 Field Filtered SM 4500-NO3 E	mg/L	Matrix: Sample	1	r 0.01	0.02	Sampled:	12-Jan-22 J	8:11 C-63062	Received: 08-Feb-22	13-Jan-22 08-Feb-22
Sample ID: 94900-R1 Nitrate as N Nitrite as N	TMDL-R4 Field Filtered SM 4500-NO3 E SM 4500-NO2 B	mg/L mg/L	Matrix: Sample 3.52 ND	1	0.01 0.01	0.02	Sampled: NA NA		8:11 C-63062 C-63046	26-Jan-22 Received: 08-Feb-22 13-Jan-22	13-Jan-22 08-Feb-22 13-Jan-22
Sample ID: 94900-R1 Nitrate as N Nitrite as N Total Dissolved Phosphorus	TMDL-R4 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E	mg/L mg/L mg/L	Matrix: Sample 3.52 ND 0.0282	1 1 1 1	0.01 0.01 0.016 0.13	0.02 0.02 0.03	Sampled: NA NA NA	J	8:11 C-63062 C-63046 C-63052 C-61043	26-Jan-22 Received: 08-Feb-22 13-Jan-22 26-Jan-22	13-Jan-22 08-Feb-22 13-Jan-22 26-Jan-22
Sample ID: 94900-R1 Nitrate as N Nitrite as N Total Dissolved Phosphorus Total Kjeldahl Nitrogen	TMDL-R4 Field Filtered SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E EPA 351.2	mg/L mg/L mg/L	Matrix: Sample 3.52 ND 0.0282 0.174	1 1 1 1	0.01 0.01 0.016 0.13	0.02 0.02 0.03	Sampled: NA NA NA NA	J	8:11 C-63062 C-63046 C-63052 C-61043	26-Jan-22 Received: 08-Feb-22 13-Jan-22 26-Jan-22 07-Mar-22	13-Jan-22 08-Feb-22 13-Jan-22 26-Jan-22 08-Mar-22

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 1 of 3

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ven	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 94902-R1	TMDL-SA Field Filtered		Matrix: Sample	ewate	r		Sampled:	12-Jan-22	8:46	Received:	13-Jan-22
Nitrate as N	SM 4500-NO3 E	mg/L	3.81	1	0.01	0.02	NA		C-63062	08-Feb-22	08-Feb-22
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-63046	13-Jan-22	13-Jan-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.065	1	0.016	0.03	NA		C-63052	26-Jan-22	26-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.333	1	0.13	0.4	NA	J	C-61043	07-Mar-22	08-Mar-22
Sample ID: 94903-R1	TMDL-R3 Total		Matrix: Sample	ewate	r		Sampled:	12-Jan-22	9:38	Received:	13-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.202	1	0.13	0.4	NA	J	C-61043	07-Mar-22	08-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.022	1	0.016	0.02	NA		C-63052	26-Jan-22	26-Jan-22
Sample ID: 94904-R1	TMDL-R3 Field Filtered		Matrix: Sample	ewate	r		Sampled:	12-Jan-22	9:38	Received:	13-Jan-22
Nitrate as N	SM 4500-NO3 E	mg/L	2.04	1	0.01	0.02	NA		C-63062	08-Feb-22	08-Feb-22
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-63046	13-Jan-22	13-Jan-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-63052	26-Jan-22	26-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.203	1	0.13	0.4	NA	J	C-61043	07-Mar-22	08-Mar-22
Sample ID: 94905-R1	TMDL-R2 Total		Matrix: Sample	ewate	r		Sampled:	12-Jan-22	10:27	Received:	13-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.343	1	0.13	0.4	NA	J	C-61043	07-Mar-22	08-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.0334	1	0.016	0.02	NA		C-63052	26-Jan-22	26-Jan-22
Sample ID: 94906-R1	TMDL-R2 Field Filtered		Matrix: Sample	ewate	r		Sampled:	12-Jan-22	10:27	Received:	13-Jan-22
Nitrate as N	SM 4500-NO3 E	mg/L	2.5	1	0.01	0.02	NA		C-63062	08-Feb-22	08-Feb-22
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-63046	13-Jan-22	13-Jan-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0236	1	0.016	0.03	NA	J	C-63052	26-Jan-22	26-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.315	1	0.13	0.4	NA	J	C-61043	07-Mar-22	08-Mar-22

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 2 of 3

Project: Ventura River Algae TMDL

			Con	ver	ntion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 94907-R1	TMDL-R1 Total		Matrix: Sample	ewate	er		Sampled:	12-Jan-22	11:31	Received:	13-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.791	1	0.13	0.4	NA		C-61043	07-Mar-22	08-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.0662	1	0.016	0.02	NA		C-63052	26-Jan-22	26-Jan-22
Sample ID: 94908-R1	TMDL-R1 Field Filtered		Matrix: Sample	ewate	er		Sampled:	12-Jan-22	11:31	Received:	13-Jan-22
Nitrate as N	SM 4500-NO3 E	mg/L	2.19	1	0.01	0.02	NA		C-63062	08-Feb-22	08-Feb-22
Nitrite as N	SM 4500-NO2 B	mg/L	0.0132	1	0.01	0.02	NA	J	C-63046	13-Jan-22	13-Jan-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0255	1	0.016	0.03	NA	J	C-63052	26-Jan-22	26-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.485	1	0.13	0.4	NA		C-61043	07-Mar-22	08-Mar-22
Sample ID: 94909-R1	TMDL-Est Total		Matrix: Sample	ewate	er		Sampled:	12-Jan-22	12:19	Received:	13-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.424	1	0.13	0.4	NA		C-61043	07-Mar-22	08-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.0798	1	0.016	0.02	NA		C-63052	26-Jan-22	26-Jan-22
Sample ID: 94910-R1	TMDL-Est Field Filtered		Matrix: Sample	ewate	er		Sampled:	12-Jan-22	12:19	Received:	13-Jan-22
Nitrate as N	SM 4500-NO3 E	mg/L	2.12	1	0.01	0.02	NA		C-63062	08-Feb-22	08-Feb-22
Nitrite as N	SM 4500-NO2 B	mg/L	0.0132	1	0.01	0.02	NA	J	C-63046	13-Jan-22	13-Jan-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0541	1	0.016	0.03	NA		C-63052	26-Jan-22	26-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.408	1	0.13	0.4	NA		C-61043	07-Mar-22	08-Mar-22

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 3 of 3

LITY CONTRO

TRATORIES, INC.

Innovative Solutions for Nature

PHYSIS Project ID: 2001003-032

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals **QUALITY CONTROL REPORT**

SAMPLE ID	BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE	ACC	URACY	PR	ECISION	QA CODE
							LEVEL	RESULT	%	LIMITS	%	LIMITS	

Nitrate as N	I	Method:	SM 4500-NC)3 E	Fra	ction: N	Α		Pre	pared:	08-Feb-22	Analy	/zed: 08-Feb-22
94895-B1	QAQC Procedural Blank	C-63062	ND	1	0.01	0.02	mg/L						
94895-BS1	QAQC Procedural Blank	C-63062	2.65	1	0.01	0.02	mg/L	2.5	0	106	68 - 135% PASS		
94895-BS2	QAQC Procedural Blank	C-63062	2.72	1	0.01	0.02	mg/L	2.5	0	109	68 - 135% PASS	3	25 PASS
94898-MS1	TMDL-CL	C-63062	28.2	10	0.01	0.02	mg/L	25	1.47	107	80 - 120% PASS		25
94898-MS2	TMDL-CL	C-63062	27.5	10	0.01	0.02	mg/L	25	1.47	104	80 - 120% PASS	3	25 PASS
94898-R2	TMDL-CL	C-63062	1.27	10	0.01	0.02	mg/L					15	25 PASS

Nitrite as N		Method	SM 4500-NO	2 B	Fra	ction: N	IA		Pre	oared:	13-Jan-22	Analy	zed: 13-Jan-22
94895-B1	QAQC Procedural Blank	C-63046	ND	1	0.01	0.02	mg/L						
94895-BS1	QAQC Procedural Blank	C-63046	0.0488	1	0.01	0.02	mg/L	0.05	0	98	49 - 120% PASS		
94895-BS2	QAQC Procedural Blank	C-63046	0.0488	1	0.01	0.02	mg/L	0.05	0	98	49 - 120% PASS	0	25 PASS
94898-MS1	TMDL-CL	C-63046	0.0625	1	0.01	0.02	mg/L	0.05	0.0212	83	80 - 120% PASS		25
94898-MS2	TMDL-CL	C-63046	0.0632	1	0.01	0.02	mg/L	0.05	0.0212	84	80 - 120% PASS	1	25 PASS
94898-R2	TMDL-CL	C-63046	0.0206	1	0.01	0.02	mg/L					3	25 PASS

Total Disso	lved Phosphorus	Method:	SM 4500-P E		Fra	ction: N	Α		Prej	oared:	26-Jan-22	Analy	/zed:	26-Jan-2:	2
94895-B1	QAQC Procedural Blank	C-63052	ND	1	0.016	0.03	mg/L								
94895-BS1	QAQC Procedural Blank	C-63052	0.306	1	0.016	0.03	mg/L	0.3	0	102	86 - 118% PASS				
94895-BS2	QAQC Procedural Blank	C-63052	0.305	1	0.016	0.03	mg/L	0.3	0	102	86 - 118% PASS	0	25	PASS	
94900-MS1	TMDL-R4	C-63052	0.311	1	0.016	0.03	mg/L	0.3	0.0282	94	80 - 120% PASS		25		
94900-MS2	TMDL-R4	C-63052	0.313	1	0.016	0.03	mg/L	0.3	0.0282	95	80 - 120% PASS	1	25	PASS	
94900-R2	TMDL-R4	C-63052	0.0189	1	0.016	0.03	mg/L					39	25	FAIL	J,SL

Total Kjeldahl Nitrogen Method: EPA 351.2 Fraction: NA Prepared: 07-Mar-22 Analyzed: 0	08-Mar-22
--	-----------

Project: Ventura River Algae TMDL

Conventionals

QUALITY CONTROL REPORT

SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	CURACY LIMITS	PF %	RECISION LIMITS	QA CODE
94895-B1	QAQC Procedural Blank	C-61043	ND	1	0.13	0.4	mg/L							
94895-BS1	QAQC Procedural Blank	C-61043	2.53	1	0.13	0.4	mg/L	2.5	0	101	90 - 110% PASS			
94895-BS2	QAQC Procedural Blank	C-61043	2.48	1	0.13	0.4	mg/L	2.5	0	99	90 - 110% PASS	2	30 PASS	
94896-CRM1	QAQC CRM – TKN QC1	C-61043	12.1	2	0.13	0.4	mg/L	12.5		97	73 - 122% PASS			
94897-MS1	TMDL-CL	C-61043	4	1	0.13	0.4	mg/L	2.5	1.74	90	90 - 110% PASS			
94897-MS2	TMDL-CL	C-61043	4.23	1	0.13	0.4	mg/L	2.5	1.74	100	90 - 110% PASS	6	30 PASS	
94897-R2	TMDL-CL	C-61043	1.42	1	0.13	0.4	mg/L					20	30 PASS	

Total Phos	phorus	Method	SM 4500-P E		Fra	ction: N	Α		Pre	pared: 2	6-Jan-22	Analyzed: 26-Jan-22	
94895-B1	QAQC Procedural Blank	C-63052	ND	1	0.016	0.02	mg/L						
94895-BS1	QAQC Procedural Blank	C-63052	0.306	1	0.016	0.02	mg/L	0.3	0	102	73 - 131% PASS		
94895-BS2	QAQC Procedural Blank	C-63052	0.305	1	0.016	0.02	mg/L	0.3	0	102	73 - 131% PASS	0 25 PASS	

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 2 of 2

CHAIN OF TERRA GUSTEO DA AURA ENVIRON ESTA DE LA CRIES, INC.

Innovative Solutions for Nature

From: Aquatic Bioassay

and Consulting Labs. 29 N. Olive St.

Ventura, CA 93001

Phone:

(805) 643-5621

Fax:

(805) 643-2930

Project ID: Ventura River AlgaeTMDL

Company: PHYSIS To:

Address: 1904 E Wright Circle

Anaheim, CA 92806

Phone: (714) 335-5793

					- Lyn Citie - control				-	ANALYS	IS
Sample I.D. No.	Sample Date	Time	Matrix	Volume/ No.	Reps	Nitrate / Nitrite, Field Filtered (SM 4500 NO3 E / SM 4500 NO2 B)	Total Phosphorous (SM 4500-P E)	Dissolved Phosphorous, Field Filtered (SM 4500-P E)	Total TKN (EPA 351.2)	Dissolved TKN (EPA 351.2)	Comments
TMDL-CL	1112127	ZIIZ	Water	3-250 mL, pl; 2-250 mL, gl.	,	V	/	/	1	V	
TMDL-R4	1113132	8211	Water	3-250 mL, pl; 2-250 mL, gl.	V	/	V	V	/	1	
TMDL-SA	1113133	8:46	Water	3-250 mL, pl; 2-250 mL, gl.	1	V	V	1	/	V	
TMDL-R3	1119137	9:38	Water	3-250 mL, pl; 2-250 mL, gl.	1	V	V	V	/	/	
TMDL-R2	1/17179	10:27	Water	3-250 mL, pl; 2-250 mL, gl.	1	1	V	1	/	/	
TMDL-R1	1/13/22	1031	Water	3-250 mL, pl; 2-250 mL, gl.		1/	/	1	V	/	
TMDL-Est	1/12/13	12:19	Water	3-250 mL, pl; 2-250 mL, gl.	1	1	V	1	V	/	
						;	-1				

Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H₂SO₄; Email report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.cd

RELINQUISHED BY

Name: Suffren Muninger

Date: 1117177

Signature: Salder Mit

Time: 1-15

Name: Shelley Policik
Signature:

Time: /3:/5

Date: /n/www

Date: 1/13/22

RELINQUISHED BY

Time: 8:34

RECEIVED BY

Signature:

Date: //23/22

Time: 4:24

Sample Receipt Summary

Re

VECEIV	ing Info	Bottle Label Color: Pink v	v/X
	ring Info		
	Initials Received By:		
2.	Date Received: 1/23/22		· · · · · · · · · · · · · · · · · · ·
3.	Time Received: 9 24	1 0 11	1-1-
4.	Client Name: Aquatic Bio assay	and Consulting	Lass
5.	Courier Information: (Please circle)	C 4004	
	• Client • UPS	 Area Fast 	• DRS
	FedEx GSO/GLS	 Ontrac 	 PAMS
	PHYSIS Driver:		
	i. Start Time:		Total Mileage:
	ii. End Time:	iv.	Number of Pickups:
	Container Information: (Please put the # of c		
1	 3 Cooler Styrofoam Coole 	er • Boxes	 None
	 Carboy(s) Carboy Trash Car 	n(s) • Carboy C	cap(s) • Other
nspec	Initials Inspected By: R6 H		
Sampl	e Integrity Upon Receipt:		
1.	COC(s) included and completely filled out		(Nes) / No
2.			
3.			
4.	Information on containers consistent with in		
	Correct containers and volume for all analys All samples received within method holding	es indicated	. 🔞 / No
5.	All and the second and the fall and the fall and	time	(Tes / No
5. 6.	All samples received within method holding		// 1 / 61
	Correct preservation used for all analyses in		
6.	Correct preservation used for all analyses in		

Project Iteration ID: 2001003-032

COC Page Number: 2 of 2

Client Name:

Project Name:

Rincon Consultants

Ventura River Algae TMDL

March 28, 2022

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Ventura River Algae TMDL

Physis Project ID: 2001003-033

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 2/10/2022. A total of 14 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Total Phosphorus by SM 4500-P E
Total Kjeldahl Nitrogen (Field Filtered) by EPA 351.2
Total Kjeldahl Nitrogen by EPA 351.2
Total Dissolved Phosphorus by SM 4500-P E
Nitrite as N by SM 4500-NO2 B
Nitrate as N by SM 4500-NO3 E

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Rachel Hansen 714 602-5320 Extension 203 rachelhansen@physislabs.com

PROJECT SAMPLE LIST

Rincon Consultants
Ventura River Algae TMDL

95353

95354

95355

TMDL-R1

TMDL-Est

TMDL-Est

PHYSIS Project ID: 2001003-033 Total Samples: 14

Samplewater Not Specified

Samplewater Not Specified

Not Specified

Samplewater

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
95342	TMDL-CL	Total	2/9/2022	7:30	Samplewater	Not Specified
95343	TMDL-CL	Field Filtered	2/9/2022	7:30	Samplewater	Not Specified
95344	TMDL-R4	Total	2/9/2022	8:00	Samplewater	Not Specified
95345	TMDL-R4	Field Filtered	2/9/2022	8:00	Samplewater	Not Specified
95346	TMDL-SA	Total	2/9/2022	8:30	Samplewater	Not Specified
95347	TMDL-SA	Field Filtered	2/9/2022	8:30	Samplewater	Not Specified
95348	TMDL-R3	Total	2/9/2022	9:30	Samplewater	Not Specified
95349	TMDL-R3	Field Filtered	2/9/2022	9:30	Samplewater	Not Specified
95350	TMDL-R2	Total	2/9/2022	10:15	Samplewater	Not Specified
95351	TMDL-R2	Field Filtered	2/9/2022	10:15	Samplewater	Not Specified
95352	TMDL-R1	Total	2/9/2022	11:00	Samplewater	Not Specified

2/9/2022

2/9/2022

2/9/2022

11:00

11:30

11:30

Field Filtered

Total

Field Filtered

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS ₂	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R₁/R₂) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRONNES, INC.

Innovative Solutions for Nature

PHYSIS Project ID: 2001003-033

Client: Rincon Consultants
Project: Ventura River Algae TMDL

Innovative Solutions for Nature

ITITIOVALIVE SOLUTIONS	or riacare										
			Con	ven	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 95342-R1	TMDL-CL Total		Matrix: Sample	ewate	r		Sampled:	09-Feb-22	7:30	Received:	10-Feb-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.659	1	0.13	0.4	NA		C-61046	16-Mar-22	17-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.02	NA		C-63076	16-Feb-22	18-Feb-22
Sample ID: 95343-R1	TMDL-CL Field Filtered		Matrix: Samplewater			Sampled:	09-Feb-22	7:30	Received:	10-Feb-22	
Nitrate as N	SM 4500-NO3 E	mg/L	ND	1	0.01	0.02	NA		C-63096	03-Mar-22	07-Mar-22
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-63072	10-Feb-22	10-Feb-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-63076	16-Feb-22	18-Feb-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.542	1	0.13	0.4	NA		C-61046	16-Mar-22	17-Mar-22
Sample ID: 95344-R1	TMDL-R4 Total		Matrix: Sample	ewate	r		Sampled:	09-Feb-22	8:00	Received:	10-Feb-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61046	16-Mar-22	17-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.0374	1	0.016	0.02	NA		C-63076	16-Feb-22	18-Feb-22
Sample ID: 95345-R1	TMDL-R4 Field Filtered		Matrix: Sample	ewate	r		Sampled:	09-Feb-22	8:00	Received:	10-Feb-22
Nitrate as N	SM 4500-NO3 E	mg/L	4.75	1	0.01	0.02	NA		C-63096	03-Mar-22	07-Mar-22
Nitrite as N	SM 4500-NO2 B	mg/L	0.01	1	0.01	0.02	NA	J	C-63072	10-Feb-22	10-Feb-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-63076	16-Feb-22	18-Feb-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61046	16-Mar-22	17-Mar-22
Sample ID: 95346-R1	TMDL-SA Total		Matrix: Sample	ewate	r		Sampled:	09-Feb-22	8:30	Received:	10-Feb-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.3	1	0.13	0.4	NA	J	C-61046	16-Mar-22	17-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.0524	1	0.016	0.02	NA		C-63076	16-Feb-22	18-Feb-22

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 1 of 3

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

Conventionals												
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed	
Sample ID: 95347-R1	TMDL-SA Field Filtered		Matrix: Sample	ewate	r		Sampled:	09-Feb-22	8:30	Received:	10-Feb-22	
Nitrate as N	SM 4500-NO3 E	mg/L	2.68	1	0.01	0.02	NA		C-63096	03-Mar-22	07-Mar-22	
Nitrite as N	SM 4500-NO2 B	mg/L	0.0135	1	0.01	0.02	NA	J	C-63072	10-Feb-22	10-Feb-22	
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0441	1	0.016	0.03	NA		C-63076	16-Feb-22	18-Feb-22	
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.358	1	0.13	0.4	NA	J	C-61046	16-Mar-22	17-Mar-22	
Sample ID: 95348-R1	TMDL-R3 Total		Matrix: Samplewater			Sampled:	09-Feb-22	9:30	Received:	10-Feb-22		
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61046	16-Mar-22	17-Mar-22	
Total Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.02	NA		C-63076	16-Feb-22	18-Feb-22	
Sample ID: 95349-R1	TMDL-R3 Field Filtered		Matrix: Sample	ewate	r		Sampled:	09-Feb-22	9:30	Received:	10-Feb-22	
Nitrate as N	SM 4500-NO3 E	mg/L	2.66	1	0.01	0.02	NA		C-63096	03-Mar-22	07-Mar-22	
Nitrite as N	SM 4500-NO2 B	mg/L	0.0106	1	0.01	0.02	NA	J	C-63072	10-Feb-22	10-Feb-22	
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-63076	16-Feb-22	18-Feb-22	
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.17	1	0.13	0.4	NA	J	C-61046	16-Mar-22	17-Mar-22	
Sample ID: 95350-R1	TMDL-R2 Total		Matrix: Sample	ewate	r		Sampled:	09-Feb-22	10:15	Received:	10-Feb-22	
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.554	1	0.13	0.4	NA		C-61046	16-Mar-22	17-Mar-22	
Total Phosphorus	SM 4500-P E	mg/L	0.0286	1	0.016	0.02	NA		C-63076	16-Feb-22	18-Feb-22	
Sample ID: 95351-R1	TMDL-R2 Field Filtered		Matrix: Sample	ewate	r		Sampled:	09-Feb-22	10:15	Received:	10-Feb-22	
Nitrate as N	SM 4500-NO3 E	mg/L	2.83	1	0.01	0.02	NA		C-63096	03-Mar-22	07-Mar-22	
Nitrite as N	SM 4500-NO2 B	mg/L	0.0102	1	0.01	0.02	NA	J	C-63072	10-Feb-22	10-Feb-22	
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0348	1	0.016	0.03	NA		C-63076	16-Feb-22	18-Feb-22	
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.465	1	0.13	0.4	NA		C-61046	16-Mar-22	17-Mar-22	

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 2 of 3

PHYSIS Project ID: 2001003-033

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

mnovacive solucions j	an verticatiff										
			Con	ver	ntion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 95352-R1	TMDL-R1 Total		Matrix: Samplewater			Sampled:	09-Feb-22	11:00	Received:	10-Feb-22	
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.76	1	0.13	0.4	NA		C-61046	16-Mar-22	17-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.0267	1	0.016	0.02	NA		C-63076	16-Feb-22	18-Feb-22
Sample ID: 95353-R1	TMDL-R1 Field Filtered		Matrix: Samplewater			Sampled:	09-Feb-22	11:00	Received:	10-Feb-22	
Nitrate as N	SM 4500-NO3 E	mg/L	2.27	1	0.01	0.02	NA		C-63096	03-Mar-22	07-Mar-22
Nitrite as N	SM 4500-NO2 B	mg/L	0.0152	1	0.01	0.02	NA	J	C-63072	10-Feb-22	10-Feb-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-63076	16-Feb-22	18-Feb-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.302	1	0.13	0.4	NA	J	C-61046	16-Mar-22	17-Mar-22
Sample ID: 95354-R1	TMDL-Est Total		Matrix: Sample	ewate	er		Sampled:	09-Feb-22	11:30	Received:	10-Feb-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.369	1	0.13	0.4	NA	J	C-61046	16-Mar-22	17-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.0363	1	0.016	0.02	NA		C-63076	16-Feb-22	18-Feb-22
Sample ID: 95355-R1	TMDL-Est Field Filtered		Matrix: Sample	ewate	er		Sampled:	09-Feb-22	11:30	Received:	10-Feb-22
Nitrate as N	SM 4500-NO3 E	mg/L	1.9	1	0.01	0.02	NA		C-63096	03-Mar-22	07-Mar-22
Nitrite as N	SM 4500-NO2 B	mg/L	0.0152	1	0.01	0.02	NA	J	C-63072	10-Feb-22	10-Feb-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-63076	16-Feb-22	18-Feb-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.187	1	0.13	0.4	NA	J	C-61046	16-Mar-22	17-Mar-22

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 3 of 3

LITY CONTRO

TRATORIES, INC.

Innovative Solutions for Nature

Client: Rincon Consultants

PHYSIS Project ID: 2001003-033

Project: Ventura River Algae TMDL

Conventionals

QUALITY CONTROL REPORT

	Conventio	onais							QUA	ALII	YCONIK	JL F	KEP	OKI	
SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT		CCURACY % LIMITS		PREC %	LISION LIMITS	QA CODI
Nitrate as N	I	Method:	SM 4500-NC)3 E	Fra	ction: N	IA.		Prep	oared:	03-Mar-22	Anal	yzed	: 07-Mar-2	2
95340-B1	QAQC Procedural Blank	C-63096	ND	1	0.01	0.02	mg/L								
95340-BS1	QAQC Procedural Blank	C-63096	0.994	1	0.01	0.02	mg/L	1	0	99	68 - 135% PASS				
95340-BS2	QAQC Procedural Blank	C-63096	0.996	1	0.01	0.02	mg/L	1	0	100	68 - 135% PASS	1	25	PASS	
Nitrite as N		Method:	SM 4500-NC)2 B	Fra	ction: N	IA.		Prep	oared:	10-Feb-22	Anal	yzed	: 10-Feb-2	2
95340-B1	QAQC Procedural Blank	C-63072	ND	1	0.01	0.02	mg/L								
95340-BS1	QAQC Procedural Blank	C-63072	0.0497	1	0.01	0.02	mg/L	0.05	0	99	49 - 120% PASS				
95340-BS2	QAQC Procedural Blank	C-63072	0.0504	1	0.01	0.02	mg/L	0.05	0	101	49 - 120% PASS	2	25	PASS	
95343-MS1	TMDL-CL	C-63072	0.0439	1	0.01	0.02	mg/L	0.05	0	88	80 - 120% PASS		25		
95343-MS2	TMDL-CL	C-63072	0.0446	1	0.01	0.02	mg/L	0.05	0	89	80 - 120% PASS	1	25	PASS	
95343-R2	TMDL-CL	C-63072	ND	1	0.01	0.02	mg/L					0	25	PASS	
Total Disso	ved Phosphorus	Method:	SM 4500-P I		Fra	ction: N	IA.		Prep	oared:	16-Feb-22	Anal	yzed	: 18-Feb-2	2
95340-B1	QAQC Procedural Blank	C-63076	ND	1	0.016	0.03	mg/L								
95340-BS1	QAQC Procedural Blank	C-63076	0.292	1	0.016	0.03	mg/L	0.3	0	97	86 - 118% PASS				
95340-BS2	QAQC Procedural Blank	C-63076	0.309	1	0.016	0.03	mg/L	0.3	0	103	86 - 118% PASS	6	25	PASS	
95343-MS1	TMDL-CL	C-63076	0.307	1	0.016	0.03	mg/L	0.3	0	102	80 - 120% PASS		25		
95343-MS2	TMDL-CL	C-63076	0.32	1	0.016	0.03	mg/L	0.3	0	107	80 - 120% PASS	5	25	PASS	
95343-R2	TMDL-CL	C-63076	ND	1	0.016	0.03	mg/L					0	25	PASS	
Total Kjelda	ahl Nitrogen	Method:	EPA 351.2		Fra	ction: N	IA		Prep	oared:	16-Mar-22	Anal	yzed	: 17-Mar-2	2
95340-B1	QAQC Procedural Blank	C-61046	ND	1	0.13	0.4	mg/L								
95340-BS1	QAQC Procedural Blank	C-61046	2.53	1	0.13	0.4	mg/L	2.5	0	101	90 - 110% PASS				
95340-BS2	QAQC Procedural Blank	C-61046	2.48	1	0.13	0.4	mg/L	2.5	0	99	90 - 110% PASS	2	30	PASS	
										· 0 ·					

PHYSIS Project ID: 2001003-033

Client: Rincon Consultants

Project: Ventura River Algae TMDL

	Convention	nals							QUA	LIT	Y CONTRO	OL REF	PORT	
SAMPLE II	D	BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	A	CCURACY LIMITS	PRE %	CISION LIMITS	QA CODE
95341-CRM	1 QAQC CRM – TKN QC1	C-61046	13	2	0.13	0.4	mg/L	12.5		104	73 - 122% PASS			
Total Phos	phorus	Method:	SM 4500-P	E	Fra	ction: I	NA		Prepa	ared:	16-Feb-22	Analyzed	l: 18-Feb-2	2
95340-B1	QAQC Procedural Blank	C-63076	ND	1	0.016	0.02	mg/L							
95340-BS1	QAQC Procedural Blank	C-63076	0.292	1	0.016	0.02	mg/L	0.3	0	97	73 - 131% PASS			
95340-BS2	QAQC Procedural Blank	C-63076	0.309	1	0.016	0.02	mg/L	0.3	0	103	73 - 131% PASS	6 25	PASS	

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 2 of 2

CHAIN OF TERRA GUSTEO DA AURA ENVIRON ESTA DE LA CRIES, INC.

Innovative Solutions for Nature

From: Aquatic Bioassay (805) 643-5621 Phone: Company: PHYSIS To: and Consulting Labs. Fax: (805) 643-2930 Address: 1904 E Wright Circle 29 N. Olive St. Anaheim, CA 92806 Project ID: Ventura River Ventura, CA 93001 AlgaeTMDL Phone: (714) 335-5793 **ANALYSIS** Dissolved Phosphorous, Field Filtered (SM 4500-P E) Filtered (SM 4500 Nn3 Fotal TKN (EPA 351.2) Dissolved TKN (EPA 351.2) Nitrate / Nitrite, Fi Total Phosphore (SM 45r . c) Volume/ Sample I.D. No. Matrix Sample Date Time Reps No. Comments 3-250 mL, pl; 02/09/2002 07:30 TMDL-CL Water 2-250 mL, gl. 3-250 mL, pl; 02/09/1002 08:00 TMDL-R4 2-250 mL, gl. Water 3-250 mL, pl; 08:30 X X 02/09/2022 X TMDL-SA 2-250 mL, gl. Water 3-250 mL, pl; X X X or/ox/ror 09:30 TMDL-R3 Water 2-250 mL, gl. 3-250 mL, pl; 10115 0409/2002 TMDL-R2 Water 2-250 mL, gl. 3-250 mL, pl; X 11:00 04/09/2022 X TMDL-R1 2-250 mL, gl. Water 3-250 mL, pl; 04/09/2022 11:30 X **TMDL-Est** 2-250 mL, gl. Water Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H₂SO₄; Email report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.com REL VQUISHED BY RELINQUISHED BY RECEIVED BY RECEIVED BY Name: Shelly Palasik Name: Shelly Robsik Name: Signature Signature: S Signature: Signature: Date: or log/long Time: 1215 Date: 12/01/2022 Time: 12:15 Date: 2/9/87 Time: 1246 Date: Time:

Sample Receipt Summary

Sample Receipt Summary	COC Page Number: 2 of 2
Receiving Info	Bottle Label Color: White w/
 Initials Received By:	
4. Client Name:ABC	
 Courier Information: (Please circle) Client UPS FedEx GSO/GLS PHYSIS Driver: 	Area Fast Ontrac PAMS
i. Start Time:	iii. Total Mileage:
ii. End Time:	iv. Number of Pickups:
6. Container Information: (Please put the # of	containers or circle none)
• Cooler • Styrofoam Coo	eler • Boxes • None
 Carboy(s) Carboy Trash Carboy 	an(s) • Carboy Cap(s) • Other
Met Ice 8. Randomly Selected Samples Temperature Inspection Info 1. Initials Inspected By: Sample Integrity Upon Receipt: 1. COC(s) included and completely filled out 2. All sample containers arrived intact	
 All samples listed on COC(s) are present Information on containers consistent with 	
Correct containers and volume for all analy	
6. All samples received within method holdin	
7. Correct preservation used for all analyses i	
8. Name of sampler included on COC(s)	
TANDL-RZ TOTAL	Phosphores bottle is missing,
	1142504 for Total Phosphorus no sample in the bootles

Project Iteration ID: 2001003-033

Client Name:

Project Name:

Rincon Consultants

Ventura River Algae TMDL

April 06, 2022

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Ventura River Algae TMDL

Physis Project ID: 2001003-034

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 3/10/2022. A total of 14 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Total Phosphorus by SM 4500-P E
Total Kjeldahl Nitrogen (Field Filtered) by EPA 351.2
Total Kjeldahl Nitrogen by EPA 351.2
Total Dissolved Phosphorus by SM 4500-P E
Nitrite as N by SM 4500-NO2 B
Nitrate as N by SM 4500-NO3 E

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier

714 602-5320

Extension 202

mistymercier@physislabs.com

PROJECT SAMPLE LIST

Rincon Consultants Ventura River Algae TMDL PHYSIS Project ID: 2001003-034

Total Samples: 14

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
95613	TMDL-CL	Total	3/9/2022	7:25	Samplewater	Not Specified
95614	TMDL-CL	Field Filtered	3/9/2022	7:25	Samplewater	Not Specified
95615	TMDL-R4	Total	3/9/2022	8:11	Samplewater	Not Specified
95616	TMDL-R4	Field Filtered	3/9/2022	8:11	Samplewater	Not Specified
95617	TMDL-SA	Total	3/9/2022	9:02	Samplewater	Not Specified
95618	TMDL-SA	Field Filtered	3/9/2022	9:02	Samplewater	Not Specified
95619	TMDL-R3	Total	3/9/2022	9:59	Samplewater	Not Specified
95620	TMDL-R3	Field Filtered	3/9/2022	9:59	Samplewater	Not Specified
95621	TMDL-R2	Total	3/9/2022	10:56	Samplewater	Not Specified
95622	TMDL-R2	Field Filtered	3/9/2022	10:56	Samplewater	Not Specified
95623	TMDL-R1	Total	3/9/2022	12:03	Samplewater	Not Specified
95624	TMDL-R1	Field Filtered	3/9/2022	12:03	Samplewater	Not Specified
95625	TMDL-Est	Total	3/9/2022	12:43	Samplewater	Not Specified
95626	TMDL-Est	Field Filtered	3/9/2022	12:43	Samplewater	Not Specified

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS ₂	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
Е	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
Ř	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRONNES, INC.

Innovative Solutions for Nature

Project: Ventura River Algae TMDL

Conventionals											
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 95613-R1	TMDL-CL Total	Matrix: Samplewater					Sampled:	09-Mar-22	7:25	Received:	10-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.578	1	0.13	0.4	NA		C-61047	23-Mar-22	24-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.0246	1	0.016	0.02	NA		C-63094	11-Mar-22	11-Mar-22
Sample ID: 95614-R1	TMDL-CL Field Filtered		Matrix: Samplewater				Sampled:	09-Mar-22	7:25	Received:	10-Mar-22
Nitrate as N	SM 4500-NO3 E	mg/L	0.0162	1	0.01	0.02	NA	J	C-63111	11-Mar-22	31-Mar-22
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-63097	10-Mar-22	10-Mar-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-63094	11-Mar-22	11-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.519	1	0.13	0.4	NA		C-61047	23-Mar-22	24-Mar-22
Sample ID: 95615-R1	TMDL-R4 Total		Matrix: Sample	wate	r		Sampled:	09-Mar-22	8:11	Received:	10-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61047	23-Mar-22	24-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.02	NA		C-63094	11-Mar-22	11-Mar-22
Sample ID: 95616-R1			Matrix: Samplewater								
Sample in: 95010-ki	TMDL-R4 Field Filtered		Matrix: Sample	wate	r		Sampled:	09-Mar-22	8:11	Received:	10-Mar-22
Nitrate as N	TMDL-R4 Field Filtered SM 4500-NO3 E	mg/L	Matrix: Sample	wate 10	r 0.01	0.02	Sampled:	09-Mar-22	8:11 C-63111	Received:	10-Mar-22 31-Mar-22
	•	mg/L	<u> </u>			0.02 0.02		09-Mar-22			
Nitrate as N	SM 4500-NO3 E	Ū	4.97	10	0.01		NA	09-Mar-22	C-63111	11-Mar-22	31-Mar-22
Nitrate as N Nitrite as N	SM 4500-NO3 E SM 4500-NO2 B	mg/L	4.97 ND	10 1	0.01 0.01	0.02	NA NA	09-Mar-22	C-63111 C-63097	11-Mar-22 10-Mar-22	31-Mar-22 10-Mar-22
Nitrate as N Nitrite as N Total Dissolved Phosphorus	SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E	mg/L mg/L	4.97 ND ND	10 1 1 1	0.01 0.01 0.016 0.13	0.02 0.03	NA NA NA	09-Mar-22 09-Mar-22	C-63111 C-63097 C-63094 C-61047	11-Mar-22 10-Mar-22 11-Mar-22	31-Mar-22 10-Mar-22 11-Mar-22
Nitrate as N Nitrite as N Total Dissolved Phosphorus Total Kjeldahl Nitrogen	SM 4500-NO3 E SM 4500-NO2 B SM 4500-P E EPA 351.2	mg/L mg/L	4.97 ND ND ND	10 1 1 1	0.01 0.01 0.016 0.13	0.02 0.03	NA NA NA NA	,	C-63111 C-63097 C-63094 C-61047	11-Mar-22 10-Mar-22 11-Mar-22 23-Mar-22	31-Mar-22 10-Mar-22 11-Mar-22 24-Mar-22

1904 E. Wright Circle, Anaheim CA 92806 fax: (714) 602-5321 www.physislabs.com info@physislabs.com main: (714) 602-5320 CA ELAP #2769 ar - 1 of 3

Project: Ventura River Algae TMDL

Innovative Solutions for Nature

			Con	ven	tion	als					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	OA CODE	Batch ID	Date Processed	Date Analyzed
		Offics									
Sample ID: 95618-R1	TMDL-SA Field Filtered		Matrix: Sample				Sampled:	09-Mar-22		Received:	10-Mar-22
Nitrate as N	SM 4500-NO3 E	mg/L	1.58	10	0.01	0.02	NA		C-63111	11-Mar-22	31-Mar-22
Nitrite as N	SM 4500-NO2 B	mg/L	0.0114	1	0.01	0.02	NA	J	C-63097	10-Mar-22	10-Mar-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-63094	11-Mar-22	11-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.21	1	0.13	0.4	NA	J	C-61047	23-Mar-22	24-Mar-22
Sample ID: 95619-R1	TMDL-R3 Total		Matrix: Sample	ewate	r		Sampled:	09-Mar-22	9:59	Received:	10-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.163	1	0.13	0.4	NA	J	C-61047	23-Mar-22	24-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.017	1	0.016	0.02	NA	J	C-63094	11-Mar-22	11-Mar-22
Sample ID: 95620-R1	TMDL-R3 Field Filtered		Matrix: Sample	ewate	r		Sampled:	09-Mar-22	9:59	Received:	10-Mar-22
Nitrate as N	SM 4500-NO3 E	mg/L	2.31	10	0.01	0.02	NA		C-63111	11-Mar-22	31-Mar-22
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-63097	10-Mar-22	10-Mar-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-63094	11-Mar-22	11-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61047	23-Mar-22	24-Mar-22
Sample ID: 95621-R1	TMDL-R2 Total		Matrix: Sample	ewate	r		Sampled:	09-Mar-22	10:56	Received:	10-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.279	1	0.13	0.4	NA	J	C-61047	23-Mar-22	24-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.0244	1	0.016	0.02	NA		C-63094	11-Mar-22	11-Mar-22
Sample ID: 95622-R1	TMDL-R2 Field Filtered		Matrix: Samplewater				Sampled:	09-Mar-22	10:56	Received:	10-Mar-22
Nitrate as N	SM 4500-NO3 E	mg/L	2.45	10	0.01	0.02	NA		C-63111	11-Mar-22	31-Mar-22
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-63097	10-Mar-22	10-Mar-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	ND	1	0.016	0.03	NA		C-63094	11-Mar-22	11-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.272	1	0.13	0.4	NA	J	C-61047	23-Mar-22	24-Mar-22

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 2 of 3

PHYSIS Project ID: 2001003-034

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals											
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 95623-R1	TMDL-R1 Total		Matrix: Sample	wate	r		Sampled:	09-Mar-22	12:03	Received:	10-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.39	1	0.13	0.4	NA	J	C-61047	23-Mar-22	24-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.291	1	0.016	0.02	NA		C-63094	11-Mar-22	11-Mar-22
Sample ID: 95624-R1	TMDL-R1 Field Filtered	Matrix: Samplewater				Sampled:	09-Mar-22	12:03	Received:	10-Mar-22	
Nitrate as N	SM 4500-NO3 E	mg/L	1.94	10	0.01	0.02	NA		C-63111	11-Mar-22	31-Mar-22
Nitrite as N	SM 4500-NO2 B	mg/L	ND	1	0.01	0.02	NA		C-63097	10-Mar-22	10-Mar-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.022	1	0.016	0.03	NA	J	C-63094	11-Mar-22	11-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.314	1	0.13	0.4	NA	J	C-61047	23-Mar-22	24-Mar-22
Sample ID: 95625-R1	TMDL-Est Total		Matrix: Sample	wate	r		Sampled:	09-Mar-22	12:43	Received:	10-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.467	1	0.13	0.4	NA		C-61047	23-Mar-22	24-Mar-22
Total Phosphorus	SM 4500-P E	mg/L	0.0736	1	0.016	0.02	NA		C-63094	11-Mar-22	11-Mar-22
Sample ID: 95626-R1	TMDL-Est Field Filtered	Matrix: Samplewater				Sampled:	09-Mar-22	12:43	Received:	10-Mar-22	
Nitrate as N	SM 4500-NO3 E	mg/L	1.66	10	0.01	0.02	NA		C-63111	11-Mar-22	31-Mar-22
Nitrite as N	SM 4500-NO2 B	mg/L	0.0103	1	0.01	0.02	NA	J	C-63097	10-Mar-22	10-Mar-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0253	1	0.016	0.03	NA	J	C-63094	11-Mar-22	11-Mar-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.39	1	0.13	0.4	NA	J	C-61047	23-Mar-22	24-Mar-22

1904 E. Wright Circle, Anaheim CA 92806 fax: (714) 602-5321 info@physislabs.com main: (714) 602-5320 www.physislabs.com CA ELAP #2769 ar - 3 of 3

LITY CONTRO

TRATORIES, INC.

Innovative Solutions for Nature

PHYSIS Project ID: 2001003-034

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals QUALITY CONTROL REPORT

									•					
SAMPLE ID		BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	CURACY LIMITS		RECISION LIMI	_
								LEVEL	KESULI	/6	LIMITS	%	LIMII	13
Nitrate as N	I	Method:	SM 4500-NC)3 E	Fra	ction: N	NΑ		Prej	pared:	11-Mar-22	Analy	yzed: 31-l	Nar-22
95611-B1	QAQC Procedural Blank	C-63111	ND	1	0.01	0.02	mg/L							
95611-BS1	QAQC Procedural Blank	C-63111	1	1	0.01	0.02	mg/L	1	0	100	68 - 135% PASS			
95611-BS2	QAQC Procedural Blank	C-63111	0.959	1	0.01	0.02	mg/L	1	0	96	68 - 135% PASS	4	25 PAS	SS
95614-MS1	TMDL-CL	C-63111	0.0632	1	0.01	0.02	mg/L	1	0.0162	5	80 - 120% FAIL		25	М
95614-MS2	TMDL-CL	C-63111	1.04	1	0.01	0.02	mg/L	1	0.0162	102	80 - 120% PASS	181	25 FAI	L M
95614-R2	TMDL-CL	C-63111	0.429	1	0.01	0.02	mg/L					185	25 FAI	L SL
Nitrite as N		Method:	SM 4500-NC)2 B	Fra	ction: N	NA		Prej	pared:	10-Mar-22	Analy	yzed: 10-l	Mar-22
95611-B1	QAQC Procedural Blank	C-63097	ND	1	0.01	0.02	mg/L							
95611-BS1	QAQC Procedural Blank	C-63097	0.0488	1	0.01	0.02	mg/L	0.05	0	98	49 - 120% PASS			
95611-BS2	QAQC Procedural Blank	C-63097	0.0489	1	0.01	0.02	mg/L	0.05	0	98	49 - 120% PASS	0	25 PAS	SS
95614-MS1	TMDL-CL	C-63097	0.0408	1	0.01	0.02	mg/L	0.05	0	82	80 - 120% PASS		25	
95614-MS2	TMDL-CL	C-63097	0.0409	1	0.01	0.02	mg/L	0.05	0	82	80 - 120% PASS	0	25 PAS	SS
95614-R2	TMDL-CL	C-63097	ND	1	0.01	0.02	mg/L					0	25 PAS	SS
Total Disso	lved Phosphorus	Method:	SM 4500-P I	Ē	Fra	ction: N	NA		Pre	pared:	11-Mar-22	Analy	yzed: 11- <i>N</i>	/lar-22
95611-B1	QAQC Procedural Blank	C-63094	ND	1	0.016	0.03	mg/L							
95611-BS1	QAQC Procedural Blank	C-63094	0.303	1	0.016	0.03	mg/L	0.3	0	101	86 - 118% PASS			
95611-BS2	QAQC Procedural Blank	C-63094	0.315	1	0.016	0.03	mg/L	0.3	0	105	86 - 118% PASS	4	25 PAS	SS
Total Kjelda	ahl Nitrogen	Method:	EPA 351.2		Fra	ction: N	NA		Prej	pared:	23-Mar-22	Analy	yzed: 24-	Mar-22
95611-B1	QAQC Procedural Blank	C-61047	ND	1	0.13	0.4	mg/L							
95611-BS1	QAQC Procedural Blank	C-61047	2.44	1	0.13	0.4	mg/L	2.5	0	98	90 - 110% PASS			
95611-BS2	QAQC Procedural Blank	C-61047	2.53	1	0.13	0.4	mg/L	2.5	0	101	90 - 110% PASS	3	30 PAS	SS

PHYSIS Project ID: 2001003-034

Client: Rincon Consultants

Project: Ventura River Algae TMDL

Conventionals QUALITY CONTROL REPORT

SAMPLE ID	BATCH ID	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	A(CURACY LIMITS	PF %	RECISION LIMITS	QA CODE
95612-CRM1 QAQC CRM – TKN Q	C1 C-61047	13.4	2	0.13	0.4	mg/L	12.5		107	73 - 122% PASS			
95613-MS1 TMDL-CL	C-61047	3.01	1	0.13	0.4	mg/L	2.5	0.578	97	90 - 110% PASS			
95613-MS2 TMDL-CL	C-61047	3.05	1	0.13	0.4	mg/L	2.5	0.578	99	90 - 110% PASS	2	30 PASS	
95613-R2 TMDL-CL	C-61047	0.522	1	0.13	0.4	mg/L					10	30 PASS	

Total Phosp	ohorus	Method:	SM 4500-P E		Fra	ction: NA	A		Prep	pared: 1	1-Mar-22	Analy	zed: 11-Mar-22	
95611-B1	QAQC Procedural Blank	C-63094	ND	1	0.016	0.02	mg/L							
95611-BS1	QAQC Procedural Blank	C-63094	0.303	1	0.016	0.02	mg/L	0.3	0	101	73 - 131% PASS			
95611-BS2	QAQC Procedural Blank	C-63094	0.315	1	0.016	0.02	mg/L	0.3	0	105	73 - 131% PASS	4	25 PASS	

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qca - 2 of 2

CHAIN OF TERRA GUSTEO DA AURA ENVIRON ESTA DE LA CRIES, INC.

Innovative Solutions for Nature

From: Aquatic Bioassay (805) 643-5621 Company: PHYSIS Phone: To: Address: 1904 E Wright Circle (805) 643-2930 and Consulting Labs. Fax: Project ID: Ventura River Anaheim, CA 92806 29 N. Olive St. AlgaeTMDL Phone: (714) 335-5793 Ventura, CA 93001 **ANALYSIS** Dissolved Phosphorous, Field Filtered (SM 4500-P E) Filtered (SM 4500 NO3 E / SM 4500 NO2 B) Total TKN (EPA 351.2) Vitrate / Nitrite, Field Dissolved TKN (EPA 351.2) Total Phosphorous (SM 4500-P E) Volume/ Matrix Reps Sample Date Time Sample I.D. No. No. Comments 3-250 mL, pl; 3/9/22 X: 25 2-250 mL, gl. TMDL-CL Water 3-250 mL, pl; V 3/9/22 8:11 2-250 mL, gl. TMDL-R4 Water 3-250 mL, pl; 3/9/27 9.02 2-250 mL, gl. TMDL-SA 3-250 mL, pl; 9:59 3/9/22 2-250 mL, gl. TMDL-R3 Water 3-250 mL, pl: 3/9/22 10:56 2-250 mL, gl TMDL-R2 Water 3-250 mL, pl; 3/9/22 12:03 2-250 mL, gl. TMDL-R1 3-250 mL, pl; 12:43 3/4/22 TMDL-Est Water 2-250 mL, gl. Notes: Total/dissolved phosphorous and total/dissolved TKN preserved with H₂SO₄; Email report to karin@aquaticbioassay.com and kbrtalik@rinconconsultants.co **RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY** Name: Soffen Hullinge Signature: Soften Ac

Date: 3/9/33

Name: Shelly Palasik

Date: 3/9/2022 Time: 19:17

Signature:

Name: Saffren Hullman

Time: 13:17

Signature: Sallin

Date: 3/9/27

Name: Jorge Lopez

Time: 12:00

Signature:

Date: 3/10/22

Time: 14:30

Sample Receipt Summary

Receiving Info

ENVIRONMENTAL LIABORATIONES Innovative Solutions for Notice

Project Iteration ID:	2001003-034
Client Name:	Rincon Consultants
Project Name:	Ventura River Algae TMDL
COC Page Number:	2 of 2
Bottle Label Color:	

5.	Courier Information: (Please circle)	Lab	
	• Client • UPS	 Area Fast 	DRS
	FedEx GSO/GLS	 Ontrac 	 PAMS
	PHYSIS Driver:		
	i. Start Time:	iii. Total I	Mileage:
	ii. End Time:		er of Pickups:
6.	Container Information: (Please put the # of conta	iners or circle none)	
•	Cooler •Styrofoam Cooler	Boxes	None
•	Carboy(s) •Carboy Trash Can(s)	 Carboy Cap(s) 	 Other
7.	What type of ice was used: (Please circle any that	apply)	
•		ry Ice • Water	 None
8.	Randomly Selected Samples Temperature (°C):(<u>ウ. 子</u> Used I/R Thern	nometer#/
	Initials Inspected By: RGH Integrity Upon Receipt: COC(s) included and completely filled out	ation on COC(s)(Ves	/ No / No / No / No / No
	All samples received within method holding time.		
о.	Correct preservation used for all analyses indicate		/ Na
6. 7. 8.	Name of sampler included on COC(s)	Yes	/ (Ng/

May 02, 2022

Karin Wisenbaker Aquatic Bioassay & Consulting Laboratories, Inc. 29 N. Olive Street Ventura, CA 93001

Project Name: Ventura River Algae TMDL

Physis Project ID: 2001003-035

Dear Karin,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 4/14/2022. A total of 12 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Total Phosphorus by SM 4500-P E
Total Kjeldahl Nitrogen (Field Filtered) by EPA 351.2
Total Kjeldahl Nitrogen by EPA 351.2
Total Dissolved Phosphorus by SM 4500-P E
Nitrite as N by SM 4500-NO2 B
Nitrate as N by SM 4500-NO3 E

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Rachel Hansen 714 602-5320 Extension 203 rachelhansen@physislabs.com

PROJECT SAMPLE LIST

Rincon Consultants Ventura River Algae TMDL PHYSIS Project ID: 2001003-035 Total Samples: 12

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
96406	TMDL-R4	Total	4/13/2022	8:05	Samplewater	Not Specified
96407	TMDL-R4	Field Filtered	4/13/2022	8:05	Samplewater	Not Specified
96408	TMDL-SA	Total	4/13/2022	8:30	Samplewater	Not Specified
96409	TMDL-SA	Field Filtered	4/13/2022	8:30	Samplewater	Not Specified
96410	TMDL-R3	Total	4/13/2022	9:10	Samplewater	Not Specified
96411	TMDL-R3	Field Filtered	4/13/2022	9:10	Samplewater	Not Specified
96412	TMDL-R2	Total	4/13/2022	9:50	Samplewater	Not Specified
96413	TMDL-R2	Field Filtered	4/13/2022	9:50	Samplewater	Not Specified
96414	TMDL-R1	Total	4/13/2022	10:40	Samplewater	Not Specified
96415	TMDL-R1	Field Filtered	4/13/2022	10:40	Samplewater	Not Specified
96416	TMDL-Est	Total	4/13/2022	11:20	Samplewater	Not Specified
96417	TMDL-Est	Field Filtered	4/13/2022	11:20	Samplewater	Not Specified

ABBREVIATIONS and ACRONYMS

Quality Manual
Quality Assurance
Quality Control
method detection limit
reporting limit
project sample
project sample replicate
matrix spike
matrix spike replicate
procedural blank
procedural blank replicate
blank spike
blank spike replicate
laboratory control spike
laboratory control spike replicate
laboratory control material
laboratory control material replicate
certified reference material
certified reference material replicate
relative percent difference
low molecular weight
high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE DEFINITION # see Case Narrative ND analyte not detected at or above the MDL analyte was detected in the procedural blank greater than 10 times the MDL В Ε analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated н sample received and/or analyzed past the recommended holding time J analyte was detected at a concentration below the RL and above the MDL, reported value is estimated insufficient sample, analysis could not be performed N analyte was outside the specified accuracy and/or precision acceptance M limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification analyte concentration in the project sample exceeded the spike SH concentration, therefore accuracy and/or precision acceptance limits do not apply SL analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply project sample was heterogeneous and sample homogeneity could not be NH readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply analyte was outside the specified QAPP acceptance limits for precision Q and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification R Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

Project: Ventura River Algae TMDL PHYSIS Project ID: 2001003-035 Client: Rincon Consultants

			Con	ven	Conventionals	sle					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Batch ID		Date Processed Date Analyzed	Date Analyzed
Sample ID: 96406-R1	TMDL-R4 Total		Matrix: Samplewater	ewater			Sampled:	13-Apr-22 8	8:05	Received:	14-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	-	0.13	0.4	NA		C-61051	02-May-22	02-May-22
Total Phosphorus	SM 4500-P E	mg/L	0.103	~	0.016	0.02	AN		C-63132	18-Apr-22	18-Apr-22
Sample ID: 96407-R1	TMDL-R4 Field Filtered		Matrix: Samplewater	ewater			Sampled:	13-Apr-22 8	8:05	Received:	14-Apr-22
Nitrate as N	SM 4500-NO3 E	mg/L	1.79	10	0.01	0.02	N		C-63135	20-Apr-22	20-Apr-22
Nitrite as N	SM 4500-NO2 B	mg/L	N	~	0.01	0.02	¥Z		C-63125	14-Apr-22	14-Apr-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0624	~	0.016	0.03	Υ Y		C-63132	18-Apr-22	18-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	Q	-	0.13	0.4	AN		C-61051	02-May-22	o2-May-22
Sample ID: 96408-R1	TMDL-SA Total		Matrix: Samplewater	ewater			Sampled:	13-Apr-22	8:30	Received:	14-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61051	02-May-22	02-May-22
Total Phosphorus	SM 4500-P E	mg/L	0.137	-	0.016	0.02	AN		C-63132	18-Apr-22	18-Apr-22
Sample ID: 96409-R1	TMDL-SA Field Filtered		Matrix: Samplewater	ewater			Sampled:	13-Apr-22 8	8:30	Received:	14-Apr-22
Nitrate as N	SM 4500-NO3 E	mg/L	3.1	10	0.01	0.02	Ϋ́		C-63135	20-Apr-22	20-Apr-22
Nitrite as N	SM 4500-NO2 B	mg/L	0.0352	-	0.01	0.02	N		C-63125	14-Apr-22	14-Apr-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.109	~	0.016	0.03	N		C-63132	18-Apr-22	18-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	<u>Q</u>	-	0.13	0.4	AN		C-61051	02-May-22	02-May-22
Sample ID: 96410-R1	TMDL-R3 Total		Matrix: Samplewater	ewater			Sampled:	13-Apr-22	9:10	Received:	14-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	ND	1	0.13	0.4	NA		C-61051	02-May-22	02-May-22
Total Phosphorus	SM 4500-P E	mg/L	0.231	-	0.016	0.02	NA		C-63132	18-Apr-22	18-Apr-22

www.physislabs.com

fax: (714) 602-5321

Project: Ventura River Algae TMDL PHYSIS Project ID: 2001003-035 Client: Rincon Consultants

			Con	ven	Conventionals	sle					
ANALYTE	Method	Units	RESULT	P	MDL	RL	Fraction	QA CODE Batch ID		Date Processed Date Analyzed	Date Analyzed
Sample ID: 96411-R1	TMDL-R3 Field Filtered		Matrix: Samplewater	water			Sampled:	13-Apr-22	9:10	Received:	14-Apr-22
Nitrate as N	SM 4500-NO3 E	mg/L	1.67	10	0.01	0.02	ΝΑ		C-63135	20-Apr-22	20 - Apr-22
Nitrite as N	SM 4500-NO2 B	mg/L	Q	-	0.01	0.02	Ą		C-63125	14-Apr-22	14-Apr-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.169	~	0.016	0.03	A A		C-63132	18-Apr-22	18-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	Q.	-	0.13	0.4	Ϋ́		C-61051	02-May-22	02-May-22
Sample ID: 96412-R1	TMDL-R2 Total		Matrix: Samplewater	water			Sampled:	13-Apr-22	9:50	Received:	14-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.257	-	0.13	0.4	ΑN	7	C-61051	02-May-22	02-May-22
Total Phosphorus	SM 4500-P E	mg/L	0.0655	-	0.016	0.02	N A		C-63132	18-Apr-22	18-Apr-22
Sample ID: 96413-R1	TMDL-R2 Field Filtered		Matrix: Samplewater	water			Sampled:	13-Apr-22	9:50	Received:	14-Apr-22
Nitrate as N	SM 4500-NO3 E	mg/L	1.87	10	0.01	0.02	NA		C-63135	20-Apr-22	20-Apr-22
Nitrite as N	SM 4500-NO2 B	mg/L	Q	-	0.01	0.02	Ą		C-63125	14-Apr-22	14-Apr-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0843	-	0.016	0.03	Y V		C-63132	18-Apr-22	18-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.235	-	0.13	0.4	Y V	7	C-61051	02-May-22	02-May-22
Sample ID: 96414-R1	TMDL-R ₁ Total		Matrix: Samplewater	water			Sampled:	13-Apr-22 10:40	10:40	Received:	14-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.343	-	0.13	0.4	Ą	7	C-61051	02-May-22	02-May-22
Total Phosphorus	SM 4500-P E	mg/L	0.166	-	0.016	0.02	₹ Z		C-63132	18-Apr-22	18-Apr-22
Sample ID: 96415-R1	TMDL-R1 Field Filtered		Matrix: Samplewater	water			Sampled:	13-Apr-22 10:40	10:40	Received:	14-Apr-22
Nitrate as N	SM 4500-NO3 E	mg/L	1.28	10	0.01	0.02	ΝΑ		C-63135	20-Apr-22	20-Apr-22
Nitrite as N	SM 4500-NO2 B	mg/L	ΩN	-	0.01	0.02	Ϋ́		C-63125	14-Apr-22	14-Apr-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.0553	_	0.016	0.03	V		C-63132	18-Apr-22	18-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.275	-	0.13	0.4	Ą	٦	C-61051	02-May-22	02-May-22

CA ELAP #2769

fax: (714) 602-5321

main: (714) 602-5320

PHYSIS Project ID: 2001003-035 Client: Rincon Consultants Project: Ventura River Algae TMDL

			Con	ven	Conventionals	sls					
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Ba	tch ID	QA CODE Batch ID Date Processed Date Analyzed	Date Analyzed
Sample ID: 96416-R1	TMDL-Est Total		Matrix: Samplewater	ewater			Sampled:	Sampled: 13-Apr-22 11:20	:20	Received:	14-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.452	-	0.13	0.4	ΝΑ)	C-61051	02-May-22	02-May-22
Total Phosphorus	SM 4500-P E	mg/L	0.186	-	0.016	0.02	Ϋ́	3	C-63132	18-Apr-22	18-Apr-22
Sample ID: 96417-R1	TMDL-Est Field Filtered		Matrix: Samplewater	ewater			Sampled:	Sampled: 13-Apr-22 11:20	:20	Received:	14-Apr-22
Nitrate as N	SM 4500-NO3 E	mg/L	1.16	10	0.01	0.02	NA)	C-63135	20-Apr-22	20-Apr-22
Nitrite as N	SM 4500-NO2 B	mg/L	0.0105	-	0.01	0.02	A V	7	C-63125	14-Apr-22	14-Apr-22
Total Dissolved Phosphorus	SM 4500-P E	mg/L	0.046	-	0.016	0.03	∀	J	C-63132	18-Apr-22	18-Apr-22
Total Kjeldahl Nitrogen	EPA 351.2	mg/L	0.271	-	0.13	0.4	N A	7	C-61051	02-May-22	02-May-22

fax: (714) 602-5321

PHYSIS Project ID: 2001003-035
Client: Rincon Consultants
Project: Ventura River Algae TMDL

11111	IIIII OVALIVE SOIALIOIIS JOI INALAIE												
	Conventionals	nals							QUA	LIT	CONTRO	QUALITY CONTROL REPORT	
SAMPLEID	0	BATCH ID	RESULT	PF	WDF	R	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	ACCURACY	PRECISION % LIMITS	QA CODE
Nitrate as N		Method:	Method: SM 4500-NO3 E)3 E	Fra	Fraction: NA			Prep	ared: 2	Prepared: 20-Apr-22	Analyzed: 20-Apr-22	r-22
96404-B1	QAQC Procedural Blank	C-63135	N	-	0.01	0.02	mg/L						
96404-BS1	QAQC Procedural Blank	C-63135	0.945	-	0.01	0.02	mg/L	~	0	94	68 - 135% PASS		
96404-BS2	QAQC Procedural Blank	C-63135	0.974	-	0.01	0.02	mg/L	_	0	26	68 - 135% PASS	3 25 PASS	
Nitrite as N		Method:	Method: SM 4500-NO2 B)2 B	Fra	Fraction: NA			Prep	ared: 1	Prepared: 14-Apr-22	Analyzed: 14-Apr-22	r-22
96404-B1	QAQC Procedural Blank	C-63125	ND	-	0.01	0.02	mg/L						
96404-BS1	QAQC Procedural Blank	C-63125	0.0497	~	0.01	0.02	mg/L	0.05	0	66	49 - 120% PASS		
96404-BS2	QAQC Procedural Blank	C-63125	0.0499	-	0.01	0.02	mg/L	0.05	0	100	49 - 120% PASS	1 25 PASS	
96407-MS1	TMDL-R4	C-63125	0.05	-	0.01	0.02	mg/L	0.05	0	100	80 - 120% PASS	25	
96407-MS2	TMDL-R4	C-63125	0.0503	-	0.01	0.02	mg/L	0.05	0	101	80 - 120% PASS	1 25 PASS	
96407-R2	TMDL-R4	C-63125	QN	-	0.01	0.02	mg/L					0 25 PASS	
Total Disso	Total Dissolved Phosphorus	Method:	Method: SM 4500-P E		Fra	Fraction: NA	4		Prep	ared: 1	Prepared: 18-Apr-22	Analyzed: 18-Apr-22	r-22
96404-B1	QAQC Procedural Blank	C-63132	ND	۲	0.016	0.03	mg/L						
96404-BS1	QAQC Procedural Blank	C-63132	0.289	~	0.016	0.03	mg/L	0.3	0	96	86 - 118% PASS		
96404-BS2	QAQC Procedural Blank	C-63132	0.275	~	0.016	0.03	mg/L	0.3	0	95	86 - 118% PASS	4 25 PASS	
96407-MS1	TMDL-R4	C-63132	0.318	₹-	0.016	0.03	mg/L	0.3	0.0624	85	80 - 120% PASS	25	
96407-MS2	TMDL-R4	C-63132	0.318	-	0.016	0.03	mg/L	0.3	0.0624	85	80 - 120% PASS	0 25 PASS	
96407-R2	TMDL-R4	C-63132	0.0693	~	0.016	0.03	mg/L					10 25 PASS	
Total Kjeld	Total Kjeldahl Nitrogen	Method:	Method: EPA 351.2		Fra	Fraction: NA	4		Prep	ared: 0	Prepared: 02-May-22	Analyzed: 02-May-22	ay-22
96404-B1	QAQC Procedural Blank	C-61051	ND	1	0.13	0.4	mg/L						
96404-BS1	QAQC Procedural Blank	C-61051	2.56	~	0.13	0.4	mg/L	2.5	0	102	90 - 110% PASS		
96404-BS2	QAQC Procedural Blank	C-61051	2.51	-	0.13	4.0	mg/L	2.5	0	100	90 - 110% PASS	2 30 PASS	
1904 E.	1904 E. Wright Circle, Anaheim CA 92806		main: (714) 602-5320	0;	fax: (714	fax: (714) 602-5321	www.	www.physislabs.com		fo@phy	info@physislabs.com CA	CA ELAP #2769	qca - 1 of 2

Project: Ventura River Algae TMDL PHYSIS Project ID: 2001003-035 Client: Rincon Consultants

	Conventionals	nals							QUAI	Ë	QUALITY CONTROL REPORT	REPORT	
SAMPLEID		BATCH ID	RESULT	DF	MDL	귊	UNITS	SPIKE LEVEL	SOURCE RESULT	AC %	ACCURACY % LIMITS	PRECISION % LIMITS	QA CODE
96405-CRM1	96405-CRM1 QAQC CRM - TKN QC1 C-61051	C-61051	12.6	2	0.13	0.4	mg/L	12.5		101	73 - 122% PASS		
96406-MS1 TMDL-R4	TMDL-R4	C-61051	2.4	-	0.13	0.4	mg/L	2.5	0	96	90 - 110% PASS		
96406-MS2 TMDL-R4	TMDL-R4	C-61051	2.38	-	0.13	0.4	mg/L	2.5	0	92	90 - 110% PASS	1 30 PASS	
96406-R2 TMDL-R4	TMDL-R4	C-61051	QN Q	-	0.13	0.4	mg/L					0 30 PASS	
Total Phosphorus	horus	Method:	Method: SM 4500-P E		Frac	Fraction: NA			Prepa	red: 1	Prepared: 18-Apr-22	Analyzed: 18-Apr-22	22
96404-B1	QAQC Procedural Blank C-63132	C-63132	ND	1	0.016 0.02	0.02	mg/L						
96404-BS1	96404-BS1 QAQC Procedural Blank	C-63132	0.289	-	0.016	0.02	mg/L	0.3	0	96	73 - 131% PASS		
96404-BS2	96404-BS2 QAQC Procedural Blank	C-63132	0.275	-	0.016	0.02	mg/L	0.3	0	95	73 - 131% PASS	4 25 PASS	

CA ELAP #2769

)		S	Comments		notenal water to collect							Control Manual M	our and not tain Conconsulation of	Name: YVONK CKCN 9 Signature: YCC Time: 11:21
	rcle 16	ANALYSIS	AGE (EPA (EPA (EPA (EPA		1	×	×	×	×	×	×		loassay.c	
	s Vright C CA 9280 5793	1	Otal TKN (EPA 351.2)	4		X	×	X	X	X	X		adnatice	BY Time. 117
	Company: PHYSIS Address: 1904 E Wright Circle Anaheim, CA 92806 Phone: (714) 335-5793		biesolved Phosphorous, Field iltered (SM 4500-P E)	4	1	X	×	X	X	×	X		TO Natimize	RELINGUISHED BY
	Compan Address Phone:		otal Phosphorous SM 4500-P E)	2		×	×	×	X	X	×	io de la companya de	all lepolt	30/ 2
	To:		Vitrate / Witrite, Field Filtered (SM 4500 NO3 F / SM 4500 NO2 B)	4		X	X	X	×	×	×		25004,	Name: 3 hell Signature
			Reps			(1	1	1	(-	Him bo	na na	., 8
	3-5621 3-2930 River MDL		Volume/ No.	3.250 ml of	2-250 mL, gl.	3-250 mL, pl; 2-250 mL, gl.	3-250 mL, pl; 2-250 mL, gl.	3-250 mL, pl; 2-250 mL, gl.	3-250 mL, pl; 2-250 mL, gl.	3-250 mL, pl; 2-250 mL, gl.	3-250 mL, pl; 2-250 mL, gl.		A locold Ni	KED BY XLIMBY N N N
	(805) 643-5621 (805) 643-2930 Ventura River AlgaeTMDL		Matrix		Water	Water	Water	Water	Water	Water	Water	T Control	police	RECEIVED TO THE TOTAL TO
	Phone: Fax: Project ID:		Time			69:05	08:30	01:10	05:60	94:01	02:11		ווום וסומו/חופה	Name: Star Mul
	issay ng Labs. St. 93001		Sample Date		20115/100			of/3/are	04/13/2002	OU/15/wer	04/13/2022		spointidsoud n	HED BY
- 1	From: Aquatic Bioassay and Consulting Labs. 29 N. Olive St. Ventura, CA 93001		Sample I.D. No.		-TMDL-CL	TMDL-R4	TMDL-SA	TMDL-R3	TMDL-R2	TMDL-R1	TMDL-Est		Notes. Totalvalssolve	Name: Shully Pales &

Sample Receipt Summary

2. Date 3. Time 4. Clier 5. Cou	als Received By: PReceived: YIVI22 Received: I:V nt Name: Aquatic rier Information: (Please Client FedEx PHYSIS Driver:	e circle) UPS GSO/GLS ase put the # of contain	•		DRS PAMS leage:
2. Date 3. Time 4. Clier 5. Cou	Received: 1/11/12 e Received: 1: 1/1 nt Name: Aquatic rier Information: (Please Client FedEx PHYSIS Driver: i. Start Time: ii. End Time: tainer Information: (Please Cooler	e circle) UPS GSO/GLS ase put the # of contai	:	Ontrac iii. Total Mi	• PAMS
3. Time 4. Clier 5. Cou	re Received: : \(\mathcal{\mathcal	UPS GSO/GLS ase put the # of contai	:	Ontrac iii. Total Mi	• PAMS
4. Clier 5. Cou	rier Information: (Please Client FedEx PHYSIS Driver: i. Start Time: ii. End Time: tainer Information: (Please Cooler	UPS GSO/GLS ase put the # of contai	:	Ontrac iii. Total Mi	• PAMS
6. Cont	rier Information: (Please Client FedEx PHYSIS Driver: i. Start Time: ii. End Time: tainer Information: (Please	UPS GSO/GLS ase put the # of contai	:	Ontrac iii. Total Mi	• PAMS
6. Cont	FedEx PHYSIS Driver: i. Start Time: ii. End Time: tainer Information: (Pleat	UPS GSO/GLS ase put the # of contai	:	Ontrac iii. Total Mi	• PAMS
6. Cont	PHYSIS Driver: i. Start Time: ii. End Time: tainer Information: (Plea	GSO/GLS ase put the # of contain		Ontrac iii. Total Mi	• PAMS
6. Cont	PHYSIS Driver: i. Start Time: ii. End Time: tainer Information: (Plea	sse put the # of contai		iii. Total Mi	
6. Cont	i. Start Time: ii. End Time: tainer Information: (Plea 	ase put the # of contai			leage:
7. Wha	ii. End Time: tainer Information: (Plea 	ase put the # of contai			leake.
7. Wha	tainer Information: (Plea Cooler •	se put the # of contai	a kas on the		of Pickups:
7. Wha	_ Cooler a		ners or cir		от гіскарз
7. Wha			•	Boxes	• None
. (W				Carboy Cap(s)	Other
. (W	type of ice was used: (Calledon Tillian and Talledon College	-	carboy cap(s)	- Other
	et Ice / * Blu			 Water 	None
O. IVOILI	domly Selected Samples		3000	Used I/R Thermo	
pection		remperatore (c). 2		osca i/ ii memio	meter #
1. COC 2. All si 3. All si 4. Info 5. Corr 6. All si	als Inspected By: A] grity Upon Receipt: (s) included and comple ample containers arrived amples listed on COC(s) rmation on containers co ect containers and volume amples received within a	tely filled outd intactare presentonsistent with informatie for all analyses indirections time	ation on Co	OC(s)	/ No / No / No / No / No / No
	ect preservation used for ne of sampler included o				No No
8. Nam	ie oi sampier included o		4 1	res /	(10)
		N	lotes:		

Project Iteration ID: 2001003-035

Client Name:

Project Name:

Rincon Consultants

Ventura River Algae TMDL