

2014-2015 Permit Year

Ventura Countywide Stormwater Quality Management Program Annual Report

Attachment E 4

Calleguas Creek Watershed TMDL Compliance Monitoring Program Sixth Year Annual Monitoring Report

Fillmore
Moorpark
Ojai
Oxnard
Port Hueneme
Santa Paula
Simi Valley

Camarillo

Thousand Oaks

Ventura County Watershed Protection Distric

DECEMBER 15, 2014

Calleguas Creek Watershed TMDL Compliance Monitoring Program Sixth Year Annual Monitoring Report

Monitoring and Reporting Program for the Nitrogen and Related Effects; Organochlorine Pesticides, Polychlorinated Biphenyls and Siltation; Toxicity; Salts; and Metals and Selenium Total Maximum Daily Loads

submitted to:

LOS ANGELES REGIONAL WATER QUALITY CONTROL BOARD

prepared by:

LARRY WALKER ASSOCIATES

on behalf of the:

STAKEHOLDERS IMPLEMENTING TMDLS IN THE CALLEGUAS CREEK WATERSHED

~Page intentionally left blank~

Table of Contents

Executive Summary	.ES-1
Total Maximum Daily Loads	. ES-1
Project Organization	. ES-1
Monitoring Event Summaries	. ES-2
Compliance Summary	. ES-2
Monitoring Program Changes	. ES-3
Introduction and Program Background	1
Introduction	1
Project Organization	2
Watershed Background	3
Monitoring Questions	5
Monitoring Program Description	6
Required Monitoring Elements	6
Optional Monitoring Elements	8
Special Studies	9
Monitoring Program Structure	10
Compliance Monitoring	10
Compliance Monitoring for Toxicity, OC Pesticides, Metals, Nitrogen, and Salts TMD	Ls 10
Investigation Monitoring	11
Land Use Discharge Investigation	11
Toxicity Investigation	12
Sampling Sites	12
Monitoring Data Summary	25
OC Pesticides TMDL Data Summary	27
Metals TMDL Data Summary	43
Toxics TMDL	64
Nutrients TMDL	73
SALTS TMDL	81
Tissue Data	85
Mugu Lagoon Tissue Data	85
Freshwater Tissue Data	87

i

Toxicity Data	93
Compliance Analysis and Discussion	95
Compliance Comparison	95
Compliance at Receiving Water Sites	97
POTW Compliance	105
Compliance Comparison Discussion	109
OC Pesticides, Toxicity, Metals, Nutrients, and Salts	109
Revisions and Recommendations	115

List of Tables

Table 1. Description of Calleguas Creek Watershed Reaches	5
Table 2. Constituents and Monitoring Frequency for CCWTMP (varies by site)	7
Table 3. Optional Constituents and Monitoring Frequency for CCWTMP (varies by site)	9
Table 4. CCWTMP Compliance Monitoring and Nutrient Investigation Sites Annual Sampl Frequency	_
Table 5. CCWTMP Land Use Monitoring Sites and Sample Frequency	15
Table 6. Toxicity Investigation Monitoring Sites and Sampling Frequency	16
Table 7. Receiving Water Sites Color Coded by Subwatershed	26
Table 8. Land Use and POTW Sites Color Coded by Type	27
Table 9. Mugu Lagoon – Central Lagoon Tissue Data	85
Table 10. Mugu Lagoon – Western Arm Tissue Data	86
Table 11. Calleguas Creek – University Drive CSUCI (03_UNIV) Fish Tissue Data Years 1	
Table 12. Conejo Creek – Adolfo Road (9B_ADOLF) Fish Tissue Data Years 1 – 6	
Table 13. Arroyo Simi – Hitch Boulevard (07_HITCH) Fish Tissue Data Years 1 – 6	89
Table 14. Arroyo Las Posas – Somis Road (06_SOMIS) Fish Tissue Data Years 1 – 6	90
Table 15. Revolon Slough – Wood Road (04_WOOD) Fish Tissue Data Years 1 – 6	91
Table 16. Revolon Slough – Wood Road (04_WOOD) Metals Fish Tissue Data Years 1 – 6	92
Table 17. Water Column Toxicity for All Monitoring Events and Sites	94
Table 18. Sediment Toxicity for All CCWTMP Freshwater Monitoring Events and Sites	95
Table 19. OC Pesticides, PCBs, & Siltation in Sediment	97
Table 20. OC Pesticides, PCBs, & Siltation in Sediment (continued)	98
Table 21. Nitrogen Compounds in Water	99
Table 22. Nitrogen Compounds in Water (continued)	100
Table 23. Nitrogen Compounds in Water (continued)	101
Table 24. Toxicity, Diazinon, and Chlorpyrifos in Water	102
Table 25. Metals and Selenium in Water	103
Table 26. Monthly Mean Salts Concentrations	104
Table 27. Nitrogen Compounds – POTWs	105
Table 28. OC Pesticides, PCBs, and Siltation - POTWs	106
Table 29. Toxicity, Chlorpyrifos, and Diazinon - POTWs	107
Table 30. Metals and Selenium - POTWs	107

Table 31.	Salts - POTWs	108
Table 32.	Exceedances of Nitrate-N Numeric TMDL Target of 10 mg/L	110
Table 33.	Compliance and Land Use Sites Comparison to Determine MS4 Chlorpyrifos WLA Compliance	
Table 34.	Selenium Monitoring Data (ug/L) in the Revolon Slough Subwatershed	111
Table 35.	Total Dissolved Solids Monitoring Data (mg/L) in Revolon Slough	113
Table 36.	Sulfate Monitoring Data (mg/L) in Revolon Slough	113
Table 37.	Boron Monitoring Data (mg/L) in Revolon Slough	113

List of Figures

Figure 1. Calleguas Creek Watershed	4
Figure 2. CCWTMP Compliance Monitoring Sampling Sites – Receiving Water	17
Figure 3. CCWMTP Compliance Monitoring Receiving Water Sampling Sites – Freshwater	
Sediment	18
Figure 4. CCWMTP Compliance Monitoring Sampling Sites – Freshwater Fish Tissue	19
Figure 5. CCWMTP Compliance Monitoring Sampling Sites – POTW Effluent	20
Figure 6. CCWMTP Compliance Monitoring Sampling Zones – Mugu Lagoon Sediment	21
Figure 7. CCWTMP Compliance Monitoring Sampling Zones – Mugu Lagoon Tissue	22
Figure 8. CCWTMP Toxicity Investigation Receiving Water Sampling Sites – Water and Sediment	23
Figure 9. CCWTMP Land Use Sampling Sites	24
Figure 10. 4,4'-DDD Water Column Concentrations in Receiving Water Sites: 2008-2014	28
Figure 11. 4,4'-DDD Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-20	
Figure 12. 4,4'-DDE Water Column Concentrations in Receiving Water Sites: 2008-2014	
Figure 13. 4,4'-DDE Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-201	
Figure 14. 4,4'-DDT Water Column Concentrations in Receiving Water Sites: 2008-2014	32
Figure 15. 4,4'-DDT Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-201	
Figure 16. Total Chlordane Water Column Concentrations in Receiving Water Sites: 2008-201	
Figure 17. Total Chlordane Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2014	
Figure 18. Toxaphene Water Column Concentrations in Receiving Water Sites: 2008-2014	36
Figure 19. Toxaphene Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2014	37
Figure 20. 4,4'-DDD Sediment Concentrations in Receiving Water Sites: 2008-2014	38
Figure 21. 4,4'-DDE Sediment Concentrations in Receiving Water Sites: 2008-2014	39
Figure 22. 4,4'-DDT Sediment Concentrations in Receiving Water Sites: 2008-2014	40
Figure 23. Total Chlordane Sediment Concentrations in Receiving Water Sites: 2008-2014	41
Figure 24. Toxaphene Sediment Concentrations in Receiving Water Sites: 2008-2014	42
Figure 25. Total Copper Dry Weather Concentrations in Receiving Water Sites: 2008-2014	44

Figure 26.	Total Copper Stormwater Concentrations in Receiving Water Sites: 2008-2014 45
_	Total Copper Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2014
	Total Copper Wet Weather Concentrations in Urban and Ag Sites: 2008-2014 47
_	Dissolved Copper Concentrations in Receiving Water Sites: 2008-2014
	Dissolved Copper Concentrations in Urban, Ag, and POTW Sites: 2008-2014 49
Figure 31.	Total Mercury Concentrations in Receiving Water Sites: 2008-2014 50
Figure 32.	Total Mercury Concentrations in Urban and Ag Sites: 2008-2014 51
Figure 33.	Total Nickel Dry Weather Concentrations in Receiving Water Sites: 2008-2014 52
Figure 34.	Total Nickel Stormwater Concentrations in Receiving Water Sites: 2008-2014 53
Figure 35.	Total Nickel Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2014
Figure 36.	Total Nickel Stormwater Concentrations in Urban and Ag Sites: 2008-2014 55
Figure 37.	Dissolved Nickel Concentrations in Receiving Water Sites: 2008-2014 56
Figure 38.	Dissolved Nickel Concentrations in Urban, Ag, and POTW Sites: 2008-2014 57
Figure 39.	Total Selenium Dry Weather Concentrations in Receiving Water Sites: 2008-2014 58
Figure 40.	Total Selenium Stormwater Concentration in Receiving Water Sites: 2008-2014 59
-	Total Selenium Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2014
Figure 42.	Total Selenium Stormwater Concentrations in Urban and Ag Sites: 2008-2014 61
Figure 43.	Dissolved Zinc Concentrations in Receiving Water Sites: 2008-2014
Figure 44.	Dissolved Zinc Concentrations in Urban, Ag, and POTW Sites: 2008-2014 63
Figure 45.	Chlorpyrifos Dry Weather Concentrations in Receiving Water Sites: 2008-2014 65
Figure 46.	Chlorpyrifos Stormwater Concentrations in Receiving Water Sites: 2008-2014 66
	Chlorpyrifos Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2014
Figure 48.	Chlorpyrifos Stormwater Concentrations in Urban and Ag Sites: 2008-2014 68
Figure 49.	Diazinon Dry Weather Concentrations in Receiving Water Sites: 2008-2014 69
Figure 50.	Diazinon Stormwater Concentrations in Receiving Water Sites: 2008-201470
Figure 51.	Diazinon Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2014 71
Figure 52.	Diazinon Stormwater Concentrations in Urban and Ag Sites: 2008-201472
Figure 53.	A N.G
U	Ammonia-N Concentrations in Receiving Water Sites: 2008-2014
•	Ammonia-N Concentrations in Receiving Water Sites: 2008-2014

Figure 56.	Nitrate-N Concentrations in Ag and POTW Sites: 2008-2014	76
Figure 57.	Nitrite-N Concentrations in Receiving Water Sites: 2008-2014	77
Figure 58.	Nitrite-N Concentrations in Ag and POTW Sites: 2008-2014	78
Figure 59.	Nitrate-N + Nitrite-N Concentrations in Receiving Water Sites: 2008-2014	79
Figure 60.	Nitrate-N + Nitrite-N Concentrations in Ag and POTW Sites: 2008-2014	80
Figure 61.	TDS Monthly Means for Receiving Water Sites Collected During Dry Weather	81
Figure 62. 0	Chloride Monthly Means for Receiving Water Sites Collected During Dry Weather	82
Figure 63.	Sulfate Monthly Means for Receiving Water Sites Collected During Dry Weather .	83
Figure 64. l	Boron Monthly Means for Receiving Water Sites Collected During Dry Weather	84

Appendices - Text Documents

- Appendix A. Monitoring Event Summaries for Toxicity, OC Pesticides, Nutrients, Metals, and Salts TMDLs
- Appendix B. Calibration Event Summary for Salts TMDL
- Appendix C. Salts Rating Curves and Surrogate Relationships
- Appendix D. Toxicity Testing and Toxicity Identification Evaluations Summary
- Appendix E. Laboratory QA/QC Results and Discussion

Attachments - Electronic Documents

Attachment 1. Toxicity Data

Attachment 2. Monitoring Data

Attachment 3. Salts Mean Daily Flows: July 2013-June 2014

Attachment 4. Chain-of-Custody Forms

Executive Summary

TOTAL MAXIMUM DAILY LOADS

There are six Total Maximum Daily Loads (TMDLs) currently effective and being implemented in the Calleguas Creek Watershed. They include:

- Nitrogen Compounds and Related Effects in Calleguas Creek (Nitrogen or Nutrients TMDL)
- Organochlorine (OC) Pesticides, Polychlorinated Biphenyls (PCBs) and Siltation in Calleguas Creek, its Tributaries, and Mugu Lagoon (OC Pesticides TMDL)
- Toxicity, Chlorpyrifos, and Diazinon in the Calleguas Creek, its Tributaries and Mugu Lagoon (Toxicity TMDL)
- Metals and Selenium in Calleguas Creek, its Tributaries, and Mugu Lagoon (Metals TMDL)
- Revolon Slough and Beardsley Wash Trash TMDL (Trash TMDL)¹
- Boron, Chloride, Sulfate and TDS (Salts) in the Calleguas Creek, its Tributaries and Mugu Lagoon (Salts TMDL)

To address the monitoring requirements of the TMDLs, the Calleguas Creek Watershed TMDL Compliance Monitoring Program (CCWTMP) was established and a Quality Assurance Project Plan (QAPP) developed and approved by the Los Angeles Regional Water Quality Control Board (Regional Water Board) Executive Officer. The QAPP currently addresses monitoring requirements for the Nitrogen, OC Pesticides, Toxicity, and Metals TMDLs. The QAPP is being revised and will be submitted by the end of the year to incorporate the monitoring requirements for the Salts TMDL as well as recommended changes in this and previous annual monitoring reports. The Trash TMDL is addressed through a separate monitoring plan and annual monitoring report. The primary purpose of this report is to document the sixth year monitoring efforts and results of the CCWTMP for the four TMDLs currently included in the QAPP as well as the Salts TMDL.²

PROJECT ORGANIZATION

The CCWTMP is a coordinated effort with the various responsible parties that make up the Stakeholders Implementing TMDLs in the Calleguas Creek Watershed (Stakeholders). Stakeholders identified in the TMDLs have developed a Memorandum of Agreement (MOA) that outlines an agreement to implement the CCWTMP.

The stakeholders to the MOA for which this report fulfills the TMDL monitoring requirements are as follows:

_

¹ Information related to the Revolon Slough and Beardsley Wash Trash TMDL is not part of this report. The Trash TMDL annual report was submitted to the Regional Water Board on December 15, 2014.

² The required start of monitoring for the Salts TMDL was September 9, 2012.

- **POTWs**: consisting of Camrosa Water District, Camarillo Sanitary District, Ventura County Waterworks District No. 1, and the Cities of Simi Valley and Thousand Oaks;
- Urban Dischargers: consisting of the Cities of Simi Valley, Thousand Oaks, Camarillo, Moorpark and Oxnard, Ventura County Watershed Protection District, and the County of Ventura Public Works Agency;
- **Agricultural Dischargers**: consisting of the entities represented by the Ventura County Agricultural Irrigated Lands Group (VCAILG) within the Calleguas Creek Watershed, a subdivision of the Farm Bureau of Ventura County; and
- Other Dischargers: consisting of the U.S. Department of Navy and Caltrans.

MONITORING EVENT SUMMARIES

Sampling events required by the Nitrogen, OC Pesticides, Toxicity, and Metals TMDLs during the sixth year of TMDL monitoring included four dry-weather events (Events 39, 40, 41, and 43) and one wet weather event (Event 42). Grab samples for salts were obtained during these events, but were not used directly to determine compliance at receiving water sites.³ Although efforts were made to sample two wet weather events, sufficient rainfall across the watershed area did not occur during the monitoring year. This is the second monitoring year during which samples from only one wet weather event were collected due to the lack of sufficient rainfall in the monitoring area. A summary of Events 39 through 43 is included in Table ES-1.

Table ES - 1. Summary of Year 6 Monitoring Events

				Mugu Lagoon	1	Fı	eshwater Site	es
Event	Туре	Date	Water Quality	Sediment	Tissue	Water Quality & Toxicity	Sediment Quality & Toxicity	Tissue
39	Dry	Aug 2013	Х			Х	Χ	Х
40	Dry	Nov 2013	Χ			Χ		
41	Dry	Feb 2014	X			X		
42	Wet	Feb 2014	X			X		
43	Dry	May 2014	X			Χ		

COMPLIANCE SUMMARY

For the most part, the CCW is in compliance with the applicable interim or final WLAs and LAs currently in effect for the Nutrients, OC Pesticides, Toxicity, Salts, and Metals TMDLs. The following observations summarize the compliance status with these TMDL allocations:

- No exceedances of the interim WLAs or LAs for OC Pesticides or PCBs occurred this monitoring year.
- Exceedances of numeric targets for Nitrate-N and Nitrate-N + Nitrite-N were observed in Mugu Lagoon, Revolon Slough, Beardsley Wash, Calleguas Creek, Arroyo Las Posas,

³ Grab samples for salts at receiving water compliance sites are used to develop statistical relationships between specific conductivity (EC) and salt constituents, which are in turn used to convert high-density EC data from continuous monitors in the field to time series of salt concentrations.

- and Arroyo Simi. Most of the exceedances occurred during dry events. No exceedances of final nutrient WLAs were measured at any POTW.
- Three exceedances of the final receiving water MS4 WLAs for chlorpyrifos were measured at receiving water sites during the storm event in 2014, but not at the MS4 land use locations. However, there were no exceedances of the interim LAs. In addition, there were no exceedances of the final diazinon MS4 WLAs and interim LAs or any exceedances of the final WLAs for chlorpyrifos or diazinon at any POTW.
- Exceedances of both the interim LA and MS4 WLA for total selenium were measured at the 04_WOOD receiving water monitoring station in Revolon Slough during the four dry weather sampling events.
- Toxicity was observed at some locations in the watershed and Toxicity Identification Evaluations (TIEs) were initiated for all samples, meeting the requirements in the QAPP. As a result, the Stakeholders are in compliance with the toxicity WLAs and LAs per the requirements of the TMDL.
- In general, receiving water sites were in compliance with interim LAs and MS4 WLAs established by the Salts TMDL; the only exception being exceedances in total dissolved solids, sulfate, and boron measured at 04_WOOD in the Revolon Slough watershed. POTWs are in compliance with interim salts WLAs, with the exception of the Camarillo Water Reclamation Plant (WRP), which experienced exceedances of chloride, sulfate, and TDS. The exceedances of interim salts WLAs for the Camarillo WRP have resulted from increased influent salt concentrations due to water conservation and a shift in the composition of the water supplied within the service area. Since the process for addressing salts is a watershed effort involving significant capital investments, the Camarillo WRP has received a time schedule order to adjust the interim limits for TDS and sulfate. During the period of this annual report, application of interim limits for chloride was stayed by State Board Order 2003-0019. As a result, the interim limits in the TMDL are not the currently applicable interim limits for the Camarillo WRP discharge.

MONITORING PROGRAM CHANGES

The QAPP is currently being updated to incorporate the Salts TMDL monitoring approach. At this time the QAPP will be updated for all constituents to reflect the recommendations identified in prior annual reports and reflect monitoring adjustments that have been implemented due to field conditions. The revised QAPP will be submitted to the Los Angeles Regional Water Quality Control Board by the end of 2014.

~Page intentionally left blank~

Introduction and Program Background

INTRODUCTION

In the Calleguas Creek Watershed (CCW), the following six total maximum daily loads (TMDLs) are currently effective and include monitoring requirements in the implementation plans:

- Nitrogen Compounds and Related Effects in Calleguas Creek (Nitrogen or Nutrients TMDL)
- Organochlorine (OC) Pesticides, Polychlorinated Biphenyls (PCBs) and Siltation in Calleguas Creek, its Tributaries, and Mugu Lagoon (OC Pesticides TMDL)
- Toxicity, Chlorpyrifos, and Diazinon in the Calleguas Creek, its Tributaries and Mugu Lagoon (Toxicity TMDL)
- Metals and Selenium in Calleguas Creek, Its Tributaries, and Mugu Lagoon (Metals TMDL)
- Revolon Slough and Beardsley Wash Trash TMDL (Trash TMDL) ¹
- Boron, Chloride, Sulfate and TDS (Salts) in the Calleguas Creek, its Tributaries and Mugu Lagoon (Salts TMDL)

To address the monitoring requirements of the TMDLs, the Calleguas Creek Watershed TMDL Compliance Monitoring Program (CCWTMP) was established and a Quality Assurance Project Plan (QAPP) developed and approved by the Los Angeles Regional Water Quality Control Board (Regional Water Board) Executive Officer. The QAPP currently addresses monitoring requirements for the Nitrogen, OC Pesticides, Toxicity, and Metals TMDLs only. The Trash TMDL is addressed through a separate monitoring plan and annual monitoring report.

The QAPP is being revised to incorporate the monitoring requirements for the Salts TMDL. A monitoring approach (Salts Plan) for the Salts TMDL was submitted by the Stakeholders Implementing TMDLs in the Calleguas Creek Watershed (Stakeholders) to the Regional Water Board in June 2009, which was conditionally approved in September 2011. Compliance monitoring for the Salts TMDL was required starting September 9, 2012.

The primary purpose of this report is to document the sixth year monitoring efforts (July 2013 to June 2014) and results of the CCWTMP for the four TMDLs currently included in the QAPP and the second year of compliance monitoring for the Salts TMDL. The report includes summaries of the sampling events, data summaries, trends analysis, and a compliance assessment. The report is divided into the following sections:

- Introduction and Program Background
- Monitoring Program Structure
- Monitoring Data Summary
- Data Trends

¹ Information related to the Revolon Slough and Beardsley Wash Trash TMDL is not part of this report. The Trash TMDL annual report will be submitted to the Regional Water Board on December 15, 2014.

- Compliance Analysis and Discussion
- Revisions and Recommendations

In addition, there are several appendices included with this report and several attachments (electronic data files) associated with this report, including:

- Appendices (text documents)
 - o Appendix A: Monitoring Event Summaries for Toxicity, OC Pesticides, Nutrients, Metals, and Salts TMDLs
 - o Appendix B: Calibration Event Summary for Salts TMDL
 - o Appendix C: Salts Rating Curves and Surrogate Relationships
 - o Appendix D: Toxicity Testing and Toxicity Identification Evaluations Summary
 - Appendix E: Laboratory Quality Assurance/Quality Control Results and Discussion
- Attachments (electronic data files)
 - o Attachment 1: Toxicity Data
 - o Attachment 2: Monitoring Data
 - o Attachment 3: Salts Mean Daily Flows: July 2013 to June 2014
 - o Attachment 4: Chain-of-Custody Forms

PROJECT ORGANIZATION

The CCWTMP is a coordinated effort where the various responsible parties identified in the TMDLs have developed a Memorandum of Agreement (MOA) that outlines an agreement to implement the CCWTMP. The responsible parties identified in the organizational structure have formally joined together to fulfill their monitoring requirements as outlined in the Basin Plan Amendments (BPAs) for the four TMDLs included in the QAPP and Salts.

The CCWTMP is intended to fulfill the monitoring requirements for only those stakeholders that are part of the MOA and/or identified by the participants of the MOA. The stakeholders to the MOA for which this report fulfills the TMDL monitoring requirements are as follows:

- **POTWs**: consisting of Camrosa Water District, Camarillo Sanitary District, Ventura County Waterworks District No. 1, and the Cities of Simi Valley and Thousand Oaks;
- **Urban Dischargers**: consisting of the Cities of Simi Valley, Thousand Oaks, Camarillo, Moorpark and Oxnard, Ventura County Watershed Protection District, and the County of Ventura Public Works Agency;
- **Agricultural Dischargers**: consisting of the entities represented by the Ventura County Agricultural Irrigated Lands Group (VCAILG) within the Calleguas Creek Watershed, a subdivision of the Farm Bureau of Ventura County; and
- Other Dischargers: consisting of the U.S. Department of the Navy and the California Department of Transportation (Caltrans).

Per the MOA, a Management Committee, consisting of one representative each from the POTWs, Urban Dischargers and Other Dischargers groups, and two representatives from the Agricultural Dischargers group, oversees the CCWTMP and makes decisions to assure the CCWTMP is carried out in a timely, accountable fashion.

Prior to the initiation of the first required sampling event in 2008, the Stakeholders contracted the day-to-day management of the CCWTMP activities and field sampling activities. The following contractors performed the following tasks during the sixth year monitoring effort:

- General Project Management Larry Walker Associates, Inc. (LWA)
- Field Monitoring Activities
 - Mugu Lagoon Water Quality Sampling MBC Applied Environmental Sciences (MBC)
 - Freshwater Water Quality/Sediment Sampling Kinnetic Laboratories, Inc. (KLI), Fugro West, Inc. (Fugro), LWA
 - o Freshwater Fish Tissue Cardno ENTRIX
 - o **Bird Egg Collection** Naval Base Ventura County Environmental Staff
- Water, Sediment, and Tissue Chemistry Analysis Physis Environmental Laboratories, Inc. (Physis)
- Salts Chemistry Analysis Fruit Growers Laboratory, Inc. (FGL) and Physis
- **Toxicity Analysis** Pacific Eco Risk Laboratories (PacEco)

The aforementioned contractors performed all the management activities and sampling efforts covered by this annual report. All field contractors are the same as used in last year's sampling efforts. As the monitoring program moves forward this list of contractors may continue to be amended to reflect new contractors hired on to perform required or new duties per the decision of the Stakeholders in the CCW.

WATERSHED BACKGROUND

Calleguas Creek drains an area of approximately 343 square miles from the Santa Susana Pass in the east to Mugu Lagoon in the southwest. The main surface water system drains from the mountains in the northeast part of the watershed toward the southwest where it flows through the Oxnard Plain before emptying into the Pacific Ocean through Mugu Lagoon. The watershed, which is elongated along an east-west axis, is approximately thirty miles long and fourteen miles wide. The Santa Susana Mountains, South Mountain, and Oak Ridge form the northern boundary of the watershed; the southern boundary is formed by the Simi Hills and Santa Monica Mountains. Figure 1 depicts the CCW and Table 1 presents the reaches of the CCW as identified in the TMDLs covered by the CCWTMP.

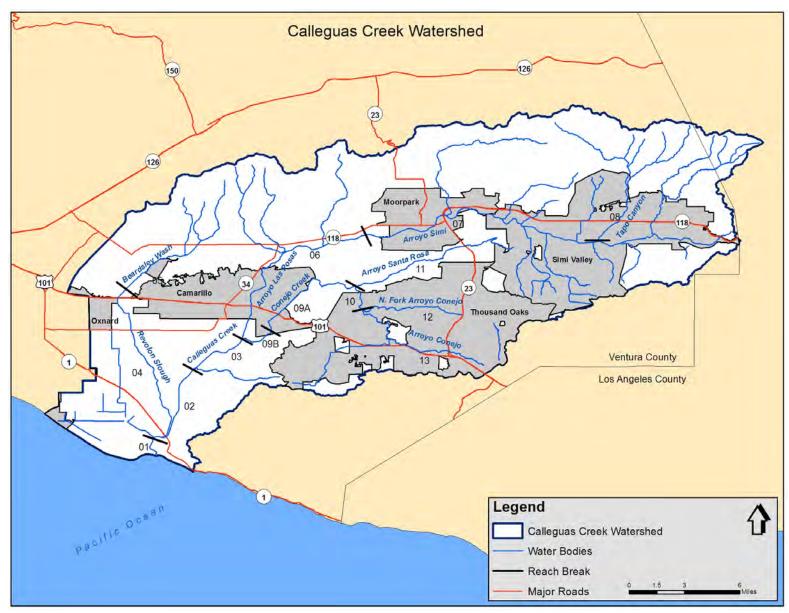


Figure 1. Calleguas Creek Watershed

Table 1. Description of Calleguas Creek Watershed Reaches

Reach No.	Reach Name	Subwatershed	Geographic Description
1	Mugu Lagoon	Mugu	Lagoon fed by Calleguas Creek
2	Calleguas Creek (Estuary to Potrero Rd.)	Calleguas	Downstream (south) of Potrero Rd
3	Calleguas Creek (Potrero Rd. to Conejo Creek)	Calleguas	Potrero Rd. upstream to confluence with Conejo Creek
4	Revolon Slough	Revolon	Revolon Slough from confluence with Calleguas Creek to Central Ave
5	Beardsley Channel	Revolon	Revolon Slough upstream of Central Ave.
6	Arroyo Las Posas	Las Posas	Confluence with Calleguas Creek to Hitch Road
7	Arroyo Simi	Arroyo Simi	End of Arroyo Las Posas (Hitch Rd) to headwaters in Simi Valley.
8	Tapo Canyon Creek	Arroyo Simi	Confluence w/ Arroyo Simi up Tapo Canyon to headwaters
9B ¹	Conejo Creek (Camrosa Diversion to Arroyo Santa Rosa)	Conejo	Extends from the confluence with Arroyo Santa Rosa downstream to the Conejo Creek Diversion.
9A ¹	Conejo Creek (Calleguas Creek to Camrosa Diversion)	Conejo	Extends from Conejo Creek Diversion to confluence with Calleguas Creek.
10	Hill Canyon reach of Conejo Creek	Conejo	Confluence with Arroyo Santa Rosa to confluence with N. Fork; and N. Fork to just above Hill Canyon WTP
11	Arroyo Santa Rosa	Conejo	Confluence with Conejo Creek to headwaters
12	North Fork Conejo Creek	Conejo	Confluence with Conejo Creek to headwaters
13	Arroyo Conejo (South Fork Conejo Creek)	Conejo	Confluence with N. Fork to headwaters —two channels

^{1.} In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched.

MONITORING QUESTIONS

The purpose of the CCWTMP is to direct the monitoring activities conducted to meet the requirements of the TMDLs effective for the CCW, excluding the Trash TMDL. The goals of the CCWTMP include:

- To determine compliance with numeric targets, waste load and load allocations, and interim load reduction milestones.
- To test for sediment toxicity at sediment monitoring stations.
- To identify causes of unknown toxicity.
- To generate additional land use runoff data to better understand pollutant sources and proportional contributions from various land use types.

- To monitor the effect of implementation actions by urban, POTW, and agricultural dischargers on in-stream water, sediment, fish tissue quality, and watershed balances (salts).
- To implement the program consistent with other regulatory actions within the CCW.

The CCWTMP is intended to answer the following monitoring questions to meet the goals of the program:

- Are numeric targets and allocations met at the locations indicated in the TMDLs?
- Are conditions improving?
- What is the contribution of constituents of concern from various land use types?

MONITORING PROGRAM DESCRIPTION

The CCWTMP was developed to address all necessary TMDL monitoring requirements and answer the monitoring questions mentioned previously using the following monitoring elements.

Required Monitoring Elements

The following environmental monitoring elements are required by the TMDLs' BPAs and are included in the CCWTMP:

- General water and sediment quality constituents;
- Water column and sediment toxicity;
- Metals and selenium in water, sediment, fish tissue, and bird eggs;
- Organic compounds in water, sediment, and fish tissue; and,
- Nitrogen and phosphorus compounds in water.
- Continuous salt concentrations and flow (the latter only at Salts TMDL receiving water compliance sites)

Table 2 lists the constituents for which analyses are conducted. Table 2 also provides a summary of sampled constituent groups and sampling frequency. The QAPP outlines, in detail, the justification of the process design, specific methodologies (both field and analytical), and quality assurance/quality control (QA/QC) procedures.

Table 2. Constituents and Monitoring Frequency for CCWTMP (varies by site)

Constituent	Frequency	
Chronic Aquatic Toxicity	Quarterly + Two wet events	
General Water Quality Constituents (GWQC)		
Flow, pH, Temperature, Dissolved Oxygen, Conductivity, Total Suspended Solids (TSS), Hardness (at freshwater sites where metals samples are collected), and Dissolved Organic Carbon (at saltwater sites where metals samples are collected)	Quarterly based on location + Two wet events	
Nutrients		
Ammonia Nitrogen, Nitrate Nitrogen, Nitrite Nitrogen, Organic Nitrogen, Total Kjehdahl Nitrogen (TKN), Total Phosphorus, Orthophosphate-P	Quarterly	
Organic Constituents In Water		
OC Pesticides ¹ and PCBs ² , OP ³ , Triazine ⁴ , and Pyrethroid ⁵ Pesticides	Quarterly + Two wet events	
Metals and Selenium In Water 6	_ Quarterly + Two wet events ⁷	
Copper, Mercury, Nickel, Zinc, and Selenium ⁸		
Salts		
Electrical Conductivity (EC) and Discharge	Receiving water: Continuous (via insitu sensors for EC and depth) plus monthly grabs for EC and discharge for sensor calibration	
Total Discolused Solids (TDS) Sulfate Chlorida Daran	Receiving water: Continuous (derived from EC/salt relationships)	
Total Dissolved Solids (TDS), Sulfate, Chloride, Boron	Other sites: Quarterly + Two wet events	
Chronic Sediment Toxicity	Annually (Every three years in Lagoon)	
General Sediment Quality Constituents (GSQC)	Annually	
Total Ammonia, Percent Moisture, Grain Size Analysis, Total Organic Carbon (TOC)	(Every three years in Lagoon)	
Organic Constituents In Sediment	Annually	
OC Pesticides ¹ and PCBs ² , OP Pesticides ³ , and Pyrethroids ⁵	(Every three years in Lagoon)	

Table 2. Constituents and Monitoring Frequency for CCWTMP (varies by site) - continued

Additional Constituents For Mugu Lagoon Sediment Metals ⁹	Every three years
Tissue	Annually
Percent Lipids, OC Pesticides ¹ and PCBs ¹⁰ , OP Pesticides ³ , and Metals ¹¹	(Every three years in Lagoon)

- 1. OC Pesticides considered: aldrin, alpha-BHC, beta-BHC, gamma-BHC (lindane), delta-BHC, chlordane-alpha, chlordane-gamma, 2,4'-DDD, 2,4'-DDE, 2,4'-DDD, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, dieldrin, endosulfan I and II, endosulfan sulfate, endrin, endrin aldehyde, endrin ketone, and toxaphene
- 2. PCBs in water and sediment considered: Aroclors identified in the CTR (1016, 1221, 1232, 1242, 1248, 1254, and 1260).
- 3. OP Pesticides considered: chlorpyrifos, diazinon, and malathion. Chlorpyrifos is the only OP pesticide that will be measured in tissue, as it is the only OP listed in tissue.
- 4. Triazine Pesticides considered: atrazine, prometryn, and simazine. Analysis of triazines ceased during year 3 following the recommendation being included in the Revisions and Recommendations section of both the year 1 and year 2 annual reports.
- 5. Pyrethroid Pesticides considered: bifenthrin, cyfluthrin, cypermethrin, deltamethrin, and permethrin
- 6. Copper, mercury, nickel, selenium and zinc will be measured as dissolved and total recoverable.
- 7. Per the Metals TMDL BPA requires that "In-stream water column samples will be collected monthly for analysis of general water quality constituents (GWQC) and, copper, mercury, nickel, selenium, and zinc for the first year. After the first year, the Executive Officer will review the monitoring report and revise the monitoring frequency as appropriate." Monthly monitoring will be suspended until such time as the Executive Officer has reviewed the monitoring report and considered revisions to the monitoring frequency. Until the Executive Officer has considered the frequency, metals will be collected quarterly in conjunction with the other TMDLs.
- 8. Monitoring at sites in Mugu Lagoon other than at the Ronald Reagan Bridge for metals is an optional element.
- Includes arsenic, cadmium, copper, lead, mercury, nickel, selenium and zinc. Arsenic, lead, and cadmium are included in addition to constituents required in the Metals TMDL as they have been found in previous sediment studies conducted in Mugu Lagoon to exceed guideline values used to interpret the relationship between sediment chemistry and biological impacts.
- 10. PCBs in tissue considered: individual congers.
- 11. Mercury and Selenium will be measured in fish tissue and bird eggs.

Optional Monitoring Elements

The QAPP outlines the optional monitoring efforts, all of which are considered above and beyond what is necessary to meet the requirements of the BPAs and answer the monitoring questions.

Table 3 lists the constituents and analyses that are considered optional for the CCWTMP. Monitoring for the constituents and conducting the analyses are not BPA requirements but are important to meeting general program goals and answering program questions. Table 3 also provides a general sampling frequency for each constituent group.

Table 3. Optional Constituents and Monitoring Frequency for CCWTMP (varies by site)

Constituent	Frequency	
Organic Constituents in Water – Grain Size Fractions ¹	One wet event annually	
OC Pesticides and PCBs, OP, Triazine ² , and Pyrethroid Pesticides	one her event armadily	
Organic Constituents in Sediment – Grain Size Fractions 1	Annually (Every three	
OC Pesticides and PCBs, OP, Triazine ² , and Pyrethroid Pesticides years in Mugu La		
Additional Constituents for Mugu Lagoon Sediment		
Macrobenthic community assessment	Every three years ³	
Sediment Toxicity – Embryo Mytilus edulis or Crassostrea gigas		

^{1.} Please see Table 2 for a list of individual constituents in each suite.

Special Studies

The Nitrogen, Toxicity, OC Pesticides, Salts, and Metals TMDL Implementation Plans identify required and optional special studies to investigate a range of issues. No specific special studies results are incorporated into this annual report summary at this time as the results of all special studies conducted to date have been submitted as separate reports. Data gathered during special study specific sampling may also be utilized to further answer not only the special studies questions, but also be applied to the overall CCWTMP goals and questions identified previously in this report.

^{2.} Analysis of triazines ceased during year three following the recommendation being included in the Revisions and Recommendations section of both the year one and year two annual reports.

^{3.} Mugu Lagoon assessments were conducted during the first and fourth years of monitoring.

Monitoring Program Structure

As outlined previously, the CCWTMP covers a broad range of TMDL monitoring requirements, including both required and optional efforts. The overall structure of these requirements per each event can be broken down into two categories: (1) compliance monitoring and (2) investigation monitoring. Compliance monitoring sites are typically located in receiving water bodies where 303(d) listings occur, and are considered points of compliance measurements. The investigational sites are located throughout the watershed, and include monitoring of drain outfalls. The purpose of these sites is not to measure compliance, but to assist with evaluating land use specific contributions of various constituents to the watershed.

The CCWTMP effort is also divided into two monitoring efforts: (1) required dry weather monitoring and (2) wet weather storm water monitoring. The following sections describe, in detail, the basis for each monitoring effort, starting with the definitions of the compliance monitoring sites and investigation monitoring sites. Specific monitoring efforts associated with each sample site are included, including the frequency of sampling by site for both dry weather and wet weather events. The sampling frequency and the constituents monitored for at the sites covered by the CCWTMP vary. A more detailed description of each topic covered can be found in the appropriate element of the QAPP, including standard operating procedures (SOPs) for field collection and sample handing techniques, and analytical procedures and protocols including minimum detection limit (MDL) and reporting limit (RL) requirements.

COMPLIANCE MONITORING

Compliance Monitoring for Toxicity, OC Pesticides, Metals, Nitrogen, and Salts TMDLs

For compliance monitoring to address the Toxicity, OC Pesticides, Metals and Nitrogen TMDLs, dry weather in-stream water column samples were collected quarterly for water column toxicity, general water quality constituents (GWQC), target organic constituents, metals, and nutrients. Target organic constituents for the OC Pesticides TMDL include the OC Pesticides and PCBs listed as a footnote in Table 2. Target organic constituents for the Toxicity TMDL include the OP and pyrethroid pesticides listed as a footnote in Table 2. Target metals for the Metals and Selenium TMDL are listed as a footnote in Table 2.

In-stream water column samples to measure compliance for the Toxicity, OC Pesticides, and Metals TMDLs are generally collected at the base of each of the subwatersheds used to assign waste load and load allocations, per the BPAs. In-stream water column samples to measure compliance for the Nitrogen TMDL are generally collected at the base of each listed reach. Toxicity Identification Evaluations (TIEs) are conducted on toxic samples as outlined in the Toxicity Testing and TIE section of the QAPP and results of these are discussed in the Toxicity Testing and TIE Evaluations Summary section of this report.

In-stream water column grab samples for salts were also collected quarterly during dry weather and once during wet weather at the base of each of the subwatersheds specified in the Salts

¹ The QAPP includes an optional metals monitoring element to monitor additional sites in Mugu Lagoon.

TMDL.² The grab sample results are used to develop statistical relationships between salt constituents and EC. These relationships are used to convert high frequency EC-sensor data to time-series of salt concentrations. Compliance with interim dry weather salt allocations is determined using monthly mean salt concentrations for dry weather developed from the time-series of data.

Additionally, POTW effluent was monitored for compliance with the effluent limits presented in the Toxicity, OC Pesticides, Metals, and Salts TMDL BPAs. Currently, POTWs collect data required by each of their individual monitoring requirements. For additional TMDL constituents not currently sampled by the plants, CCWTMP crews perform sampling as necessary (efforts vary by plant and constituent group). All CCWTMP-required data for POTWs are compiled in this report.

All efforts were made to include two wet weather water sampling events for compliance monitoring for the OC Pesticides, Toxicity, Metals, and Salts TMDLs during targeted storm events between October and April. Due to the unusually dry conditions during the monitoring year, only one storm event was captured.

Streambed sediment samples, collected annually in the freshwater portion of the watershed, were collected during the first event of this monitoring year and analyzed for sediment toxicity, general sediment quality constituents (GSQC), and target organics. Sediment samples in Mugu Lagoon are only to be collected every three years per the approved QAPP. Samples were collected and reported in years one and four; the next sediment sampling in Mugu Lagoon will take place in year seven.

Similar to the sediment sampling frequency, fish tissue samples were collected in the freshwater portions of the watershed in August 2013, and will continue to be collected annually for the CCWTMP. Fish tissue and mussel samples were collected in Mugu Lagoon during the first and fourth years of monitoring and will continue to be collected every three years.

INVESTIGATION MONITORING

Investigation monitoring focuses on identifying the contribution of constituents of concern from various land uses in the watershed and areas where toxicity has been observed to occur in the past that are not addressed by compliance monitoring. These sites are meant to compliment compliance monitoring efforts, fill data gaps where identified, and assist in identification of sources of constituents that may be leading to non-compliant conditions. The following describes the various types of investigation sites sampled during this reporting period.

Land Use Discharge Investigation

Land use discharge samples are generally collected concurrently (on the same day when possible) with compliance monitoring at representative agricultural and urban discharge sites generally located in each of the subwatersheds and analyzed for selected GWQC, metals, and target organic constituents (constituents monitored per site varies based upon sub-watershed).

² The goal is to sample two wet weather events per monitoring year; however, only one storm was predicted that met the thresholds for monitoring.

Toxicity Investigation

As significant mortality had not occurred at the two sediment toxicity investigation sites during the first three years of the CCWTMP, ceasing investigation monitoring was recommended in the third year annual report. Toxicity testing at the investigation sites ceased until event 38, when it was resumed to support delisting of the identified reaches. Sediment toxicity investigation monitoring for delisting did not take place during year six sampling. However, the year-six samples were analyzed for a suite of constituents (general chemistry, general nutrients, metals, PCBs, OC pesticides, OP pesticides, and pyrethroid pesticides), particle size distribution, and total organic carbon.

Water column toxicity sampling for year six occurred during four events for each of the two investigation sites. However, toxicity testing could not be completed for Event 41 due to a laboratory issue with the test organisms. The normal annual sampling frequency for this investigation is provided in Table 6.

SAMPLING SITES

The QAPP details the justification and rationale for each of the sites sampled via the CCWTMP. Information on compliance monitoring sites, land use sites, and sample collection frequency is presented in Table 4 and Table 5. The general locations of the receiving water compliance monitoring sites (excluding Mugu Lagoon) for water, sediment, and fish tissue are presented in Figure 2 through Figure 4. The POTW effluent discharge sites are presented in Figure 5. The sampling sites in each figure are designated by sampled constituent group. The compliance monitoring sampling zones for sediment sampling and tissue sampling in Mugu Lagoon are shown in Figure 6 and Figure 7, respectively.

The non-Mugu Lagoon water and sediment toxicity investigation sampling sites coincide with current and previous sampling programs in the CCW. Water and sediment toxicity investigation sampling sites and sampling frequency are presented in Table 6, while the general locations of the water and sediment toxicity investigation sampling sites in the CCW are presented in Figure 8. Land use monitoring sites are shown in Figure 9.

The salt monitoring sites correspond with compliance sites or land use sites already included in the QAPP for monitoring related to other TMDLs (Figure 2) with two exceptions:

- 1. One of the salt compliance points is only used for salt monitoring (Conejo Creek at Baron Brothers Nursery), and thus is not currently described in the QAPP.
- 2. The continuous monitoring equipment (and the location of salt grab samples) for the Simi subwatershed was installed just downstream of the Tierra Rejada bridge, and is referred to as "07_TIERRA".

The CCWTMP efforts summarized in the annual report correspond to the sites and locations listed below. As this program progresses, the number and location of sites may be revised if existing sites become inaccessible, if it is determined that alternative locations are needed, or if the number of land use stations needed to appropriately characterize discharges needs modification.

Table 4. CCWTMP Compliance Monitoring and Nutrient Investigation Sites Annual Sampling Frequency

Sub-				GPS Coordinates			Water 1, 2				Sediment			Tissue ³		
Wat.	Site Id	Reach	Site Location	Lat	Long	Tox	Pests/ PCBs	Nut	Metal	Salts	GWQC	Tox	Pests /PCBs	Metal	Pests/ PCBs	Metal ⁴
	01_RR_BR	1	Ronald Reagan St Bridge	34.1090	-119.0916	6	6	6	6	NA	6	NA	NA	NA	NA	NA
Mugu Lagoon	01_BPT_3	1	Located In Eastern Arm	_		NA	NA	NA	NA	NA	NA	_				
	01_BPT_6	1	Located In Eastern Part Of Western Arm			NA	NA	NA	NA	NA	NA	_				
	01_BPT_14	1	Located In The Central Part Of The Western Arm		site locations ded as each	NA	NA	NA	NA	NA	NA	Once Every Three - Years				
	01_BPT_15	1	Located Between Estuary and Mouth of Lagoon	site represents a generalized sample		NA	NA	NA	NA	NA	NA	_	rears			
	01_SG_74	1	Located In Western Part of Central Lagoon	which a	on zone in sample will	NA	NA	NA	NA	NA	NA					
	Central Lagoon	1	Sampled In Central Lagoon	be collected.		NA	NA	NA	NA	NA	NA	_			Once Every Three Years	
	Western Arm	1	Sampled In Western Arm Of The Lagoon			NA	NA	NA	NA	NA	NA					
Revolon	04_WOOD 5	4	Revolon Slough East Side Of Wood Road	34.1698	-119.0958	6	6	6	6	6	6	1	1	NA	1	1
Slough	05_CENTR	5	Beardsley Wash at Central Avenue	34.2300	-119.1128	NA	NA	6	NA	NA	6	NA	NA	NA	NA	NA
	02_PCH	2	Calleguas Creek NE Side of Hwy 1 Bridge	34.1119	-119.0818	NA	NA	4	NA	NA	4	NA	NA	NA	NA	NA
	03_UNIV	3	Calleguas Creek At Camarillo Street	34.1795	-119.0399	6	6	6	6	6	6	1	1	NA	1	NA
Calleguas	03D_CAMR ⁶	3	Camrosa Water Reclamation Plant	34.1679	-119.0530	4	4	4	4	4	4	NA	NA	NA	NA	NA
	9A_HOWAR ⁷	9B ⁷	Conejo Creek At Howard Road Bridge	34.1931	-119.0025	NA	NA	6	NA	6	NA	NA	NA	NA	NA	NA
	9AD_CAMA 7	9B ⁷	Camarillo Water Reclamation Plant	34.1938	-119.0017	4	4	4	4	4	4	NA	NA	NA	NA	NA
Conejo	9B_ADOLF ⁷	9A ⁷	Conejo Creek At Adolfo Road	34.2137	-118.9894	6	6	6	NA	NA	6	NA	1	NA	1	NA

Sub-			Site Location	GPS Coordinates			Water 1, 2				Sediment			Tissue ³		
Wat.	Site Id	Reach		Lat	Long	Tox	Pests/ PCBs	Nut	Metal	Salts	GWQC	Tox	Pests /PCBs	Metal	Pests/ PCBs	Metal ⁴
Conejo	10_GATE	10	Conejo Creek Hill Canyon Below N Fork	34.2178	-118.9281	NA	NA	6	NA	NA	6	NA	NA	NA	NA	NA
	10D_HILL	10	Hill Canyon Wastewater Treatment Plant	34.2113	-118.9218	4	4	4	4	4	4	NA	NA	NA	NA	NA
	12_PARK	12	Conejo Creek North Fork above Hill Canyon	34.2144	-118.915	NA	NA	4	NA	NA	4	NA	NA	NA	NA	NA
	13_BELT	13	Conejo Creek S Fork Behind Belt Press Building	34.2078	-118.9194	NA	NA	4	NA	NA	4	NA	NA	NA	NA	NA
	9B_BARON 7	9A ⁷	Conejo Creek at Baron Brothers Nursery	34.2365	-118.9643	NA	NA	NA	NA	6	NA	NA	NA	NA	NA	NA
Las Posas	06_SOMIS	6	Arroyo Las Posas Off Somis Road	34.2540	-118.9925	6	6	6	NA	NA	6	NA	1	NA	1	NA
	06D_MOOR 6	6	Ventura County Wastewater Treatment Plant	34.2697	-118.9357	4	4	4	4	4	4	NA	NA	NA	NA	NA
Arroyo Simi	07_HITCH	7	Arroyo Simi East Of Hitch Boulevard	34.2716	-118.9234	6	6	6	NA	NA	6	NA	1	NA	1	NA
	07_TIERRA	7	Arroyo Simi downstream from Tierra Rejada Blvd.	34.2701	-118.9058	NA	NA	NA	NA	6	NA	NA	NA	NA	NA	NA
	07_MADER	7	Arroyo Simi at Madera Ave.	34.2778	-118.7958	NA	NA	6	NA	NA	6	NA	NA	NA	NA	NA
	07D_SIMI	7	Simi Valley Water Quality Control Plant	34.2848	-118.8128	4	4	4	4	4	4	NA	NA	NA	NA	NA

NA - Not Analyzed

Tox – Samples will be analyzed for toxicity and OP and pyrethroid pesticides as listed in Table 2. Toxicity in water will not be analyzed at 01_RR_BR or at the POTWs.

Pests/PCBs - Samples will be analyzed for OC pesticides and PCBs as listed in Table 2. Chlorpyrifos will be analyzed in tissue at 04_WOOD as it is on the 303(d) list for this reach.

Nut – Samples will be analyzed for Nutrients as listed in Table 2.

Metal – Samples will be analyzed for Metals as listed in Table 2.

GWQC - Samples will be analyzed for General Water Quality Constituents as listed in Table 2.

- 1. Sites listed for 6 sampling events per monitoring year refers to 4 quarterly dry events and the attempt to sample 2 additional wet events..
- 2. Grab samples for salts at compliance sites are not directly used to determine compliance with salts WQOs, but are used to develop statistical relationships between EC and salt constituents (Appendix C).
- 3. Tissue samples will be collected in the same location as water and sediment samples. Samples may be collected elsewhere if no fish are found at pre-established sample stations.
- 4. Bird egg samples will be collected and analyzed for mercury and selenium in the Mugu Lagoon subwatershed.
- 5. TIEs will not be performed at 04 WOOD.
- 6. The Camrosa Water Reclamation Plant and the Ventura County Wastewater Treatment Plant are not currently discharging. However, these sites are included in case they must be sampled at a later date.
- 7. In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched. For consistency with the TMDLs and historic site naming conventions, the site names in the annual monitoring reports maintain the original reach designations.

Table 5. CCWTMP Land Use Monitoring Sites and Sample Frequency

Sub-Wat.	Cito ID	Dooole	Site	Cita Lagation	GPS C	oordinates	Pests/	Nutrionto	Metal	Salts	GWQC	
Sub-wat.	Site ID	Reach	Type ¹	Site Location	Lat	Long	PCBs	Nutrients	wetai	Saits	GWUC	
Mugu Lagoon	01T_ODD2_DCH	1	Ag	Duck Pond/Mugu/Oxnard Drain #2 S. of Hueneme Rd	34.1395	-119.1185	6	6	6	NA	6	
	04D_WOOD	4	Ag	Agricultural Drain on E. Side of Wood Rd N. of Revolon	34.1708	-119.0963	6	6	6	6	6	
Revolon Slough	05D_SANT_ VCWPD	5	Ag	Santa Clara Drain at VCWPD Gage 781 prior to confluence with Beardsley Channel	34.2426	-119.1137	6	6	6	NA	6	
	04D_VENTURA	4	Urban	Camarilo Hills Drain at Ventura Blvd and Las Posas Rd at VCWPD Gage 835	34.2162	-119.0685	6	NA	6	6	6	
Calleguas	02D_BROOM	2	Ag	Discharge to Calleguas Creek at Broome Ranch Rd.	34.1433	-119.0713	6	6	6	NA	6	
	9BD_GERRY ²	9A ²	Ag	Drainage ditch crossing Santa Rosa Rd at Gerry Rd	34.2358	-118.9446	6	6	6	6	6	
Conejo	9BD_ADOLF ²	9A ²	Urban	Urban storm drain passing under N. side of Adolfo Rd approximately 300 meters from Reach 9B	34.2148	-118.9951	6	NA	6	6	6	
	13_SB_HILL	13	Urban	South Branch Arroyo Conejo on S. Side of W Hillcrest	34.1849	-118.9075	6	NA	NA	6	6	
Las Posas	06T_FC_BR	6	Ag	Fox Canyon at Bradley Rd - just north of Hwy 118	34.2646	-119.0111	6	6	NA	NA	6	
Arroyo Simi	07D_HITCH_ LEVEE_2	7	Ag	2 nd corrugated pipe discharging on north side of Arroyo Simi flood control levee off of Hitch Blvd just beyond 1 st power pole.	34.2716	-118.9219	6	6	NA	6	6	
	07D_CTP	7	Urban	Flood control channel in Country Trail Park	34.2646	-118.9075	6	NA	NA	6	6	
	07T_DC_H	7	Urban	Dry Canyon at Heywood Street	34.2683	-118.7600	6	NA	NA	NA	6	

Ag = Agricultural Land Use Site

Urban = Urban Land Use Site

NA - Not Analyzed

^{1.} Specific constituents analyzed under each category are listed in Table 2.

^{2.} In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched. For consistency with the TMDLs and historic site naming conventions, the site names in the annual monitoring reports maintain the original reach designations.

Table 6. Toxicity Investigation Monitoring Sites and Sampling Frequency

				GPS Co	oordinates			
Subwatershed	Site ID	Reach	Site Location	Lat	Long	Tox	Pests/PCBs	GWQC
Sediment Toxic	city Investigation	1						
Collegues	02_PCH	2	Calleguas Creek Northeast Side Of Highway 1 Bridge	34.1119	-119.0818	1	1	1
Calleguas	9A_HOWAR ²	9B ²	Conejo Creek At Howard Road Bridge	34.1931	-119.0025	1	1	1
Water Toxicity	Investigation 1, 3							
Consis	10_GATE	10	Conejo Creek Hill Canyon Below North Fork Of Conejo Creek	34.2178	-118.9281	5	5	5
Conejo	13_BELT	13	Conejo Creek South Fork Behind Hill Canyon Belt Press Building	34.2078	-118.9194	4	4	4

Tox – Samples will be analyzed for toxicity, OP, and pyrethroid pesticides in water and toxicity, OP, and pyrethroid pesticides in sediment as listed in Table 2. Pests/PCBs – Samples will be analyzed for OC pesticides and PCBs as listed in Table 2.

GWQC – Samples will be analyzed for General Water Quality Constituents as listed in Table 2.

^{1.} This table depicts the normal toxicity investigation sampling frequency. During year 5, this investigation was put on hold and then re-started as described in text.

^{2.} In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched. For consistency with the TMDLs and historic site naming conventions, the site names in the annual monitoring reports maintain the original reach designations.

^{3.} Includes two wet events per site; except during years when there is insufficient rainfall to trigger sampling.

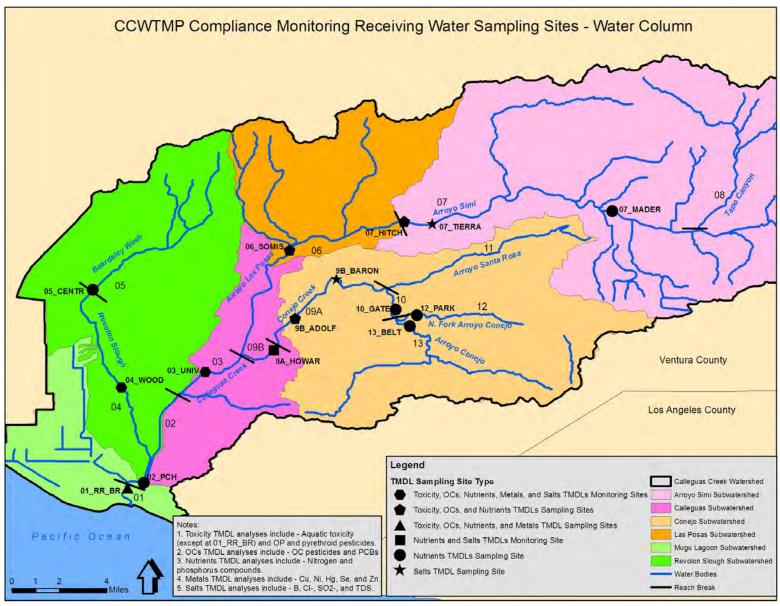


Figure 2. CCWTMP Compliance Monitoring Sampling Sites – Receiving Water

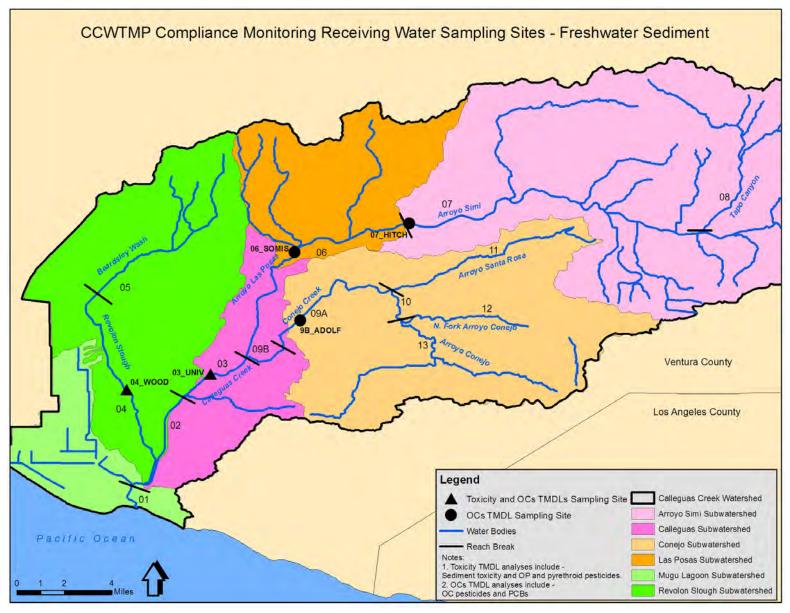


Figure 3. CCWMTP Compliance Monitoring Receiving Water Sampling Sites – Freshwater Sediment

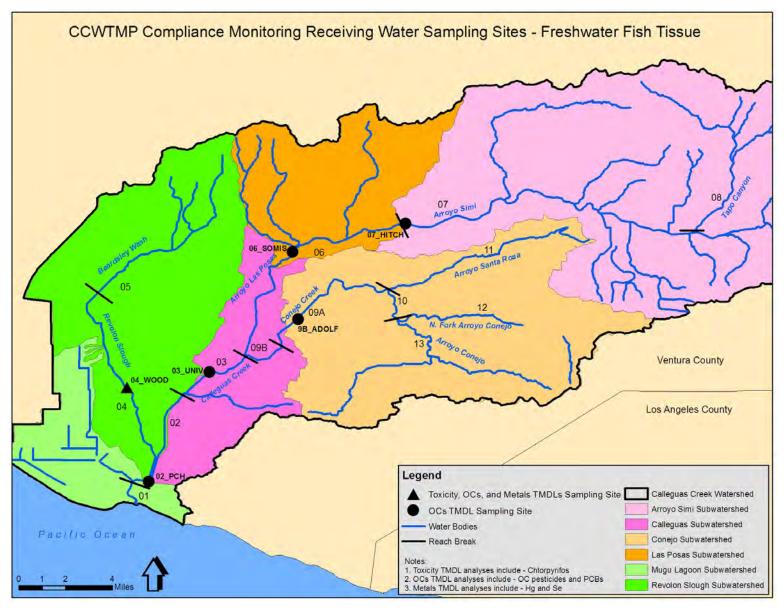


Figure 4. CCWMTP Compliance Monitoring Sampling Sites – Freshwater Fish Tissue

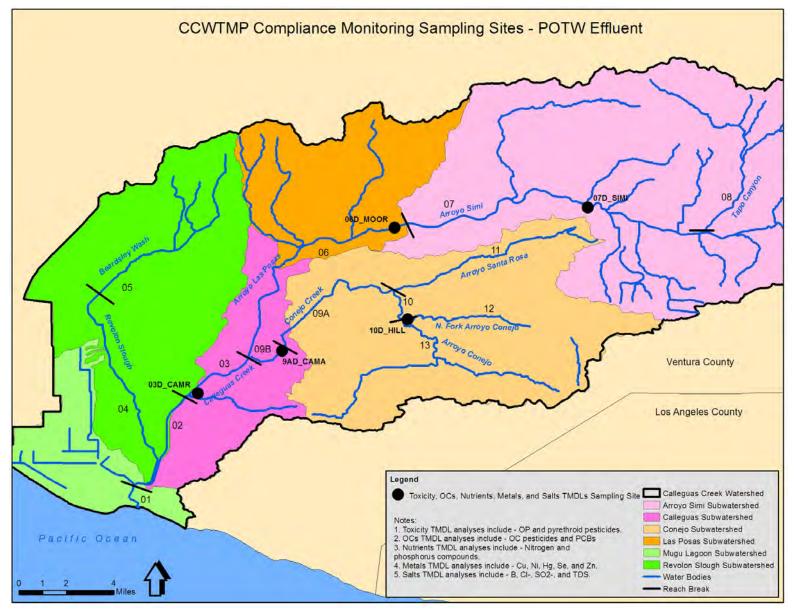


Figure 5. CCWMTP Compliance Monitoring Sampling Sites – POTW Effluent

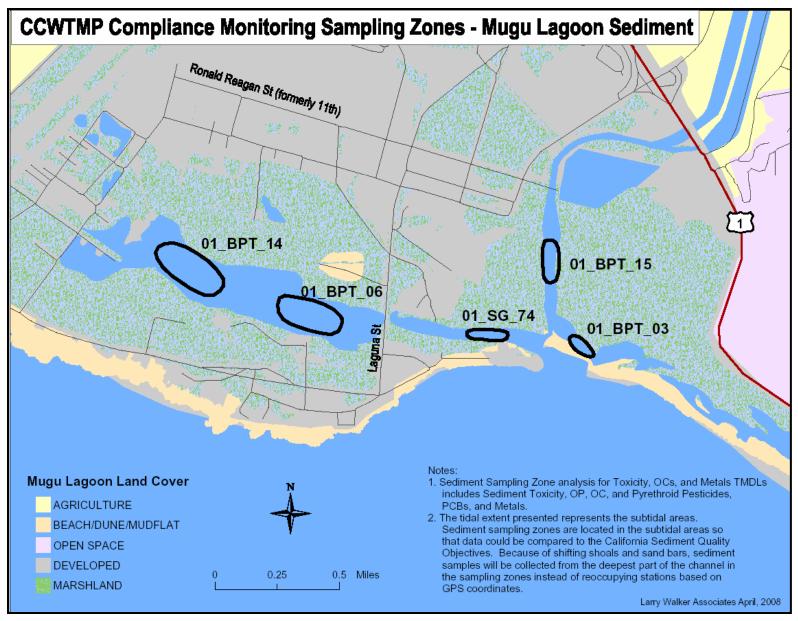


Figure 6. CCWMTP Compliance Monitoring Sampling Zones – Mugu Lagoon Sediment

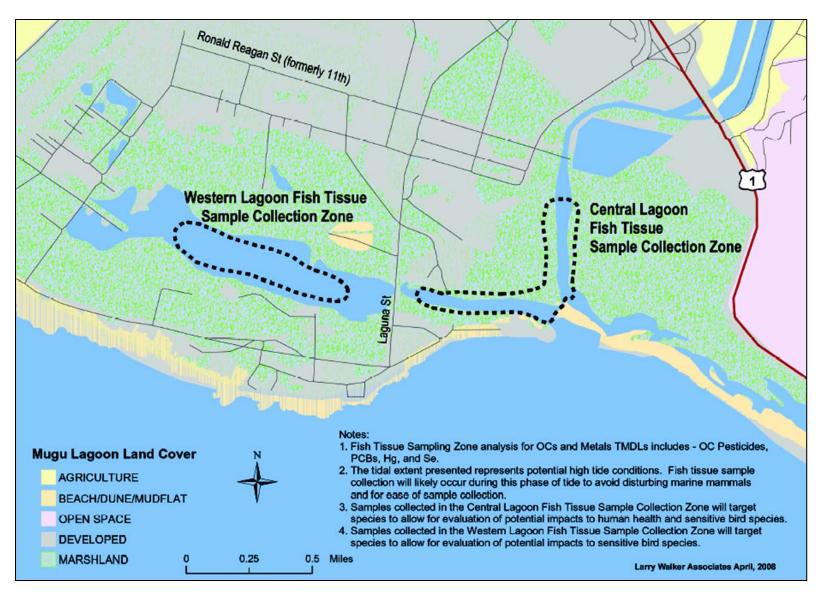


Figure 7. CCWTMP Compliance Monitoring Sampling Zones - Mugu Lagoon Tissue

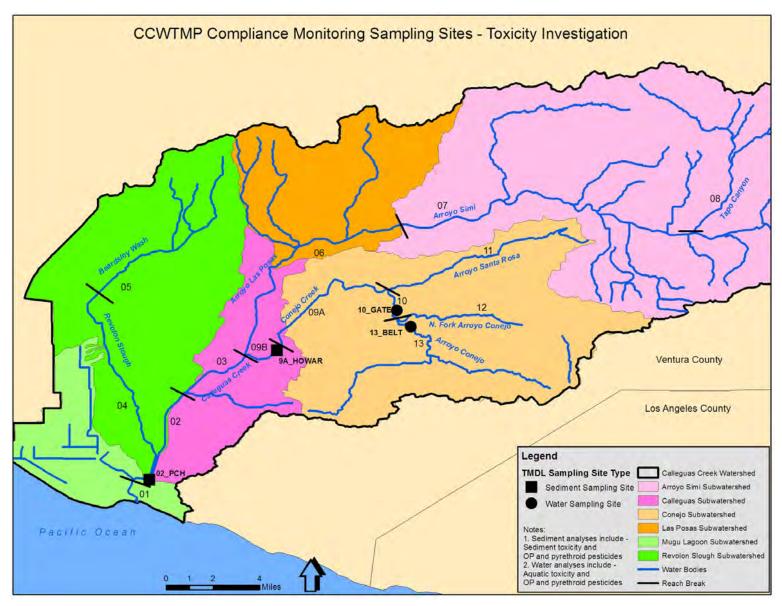


Figure 8. CCWTMP Toxicity Investigation Receiving Water Sampling Sites – Water and Sediment

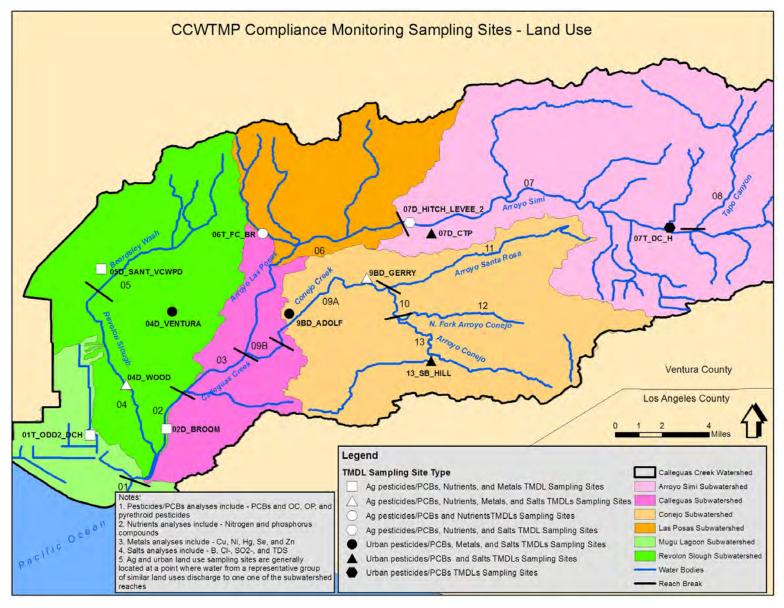


Figure 9. CCWTMP Land Use Sampling Sites

Monitoring Data Summary

To summarize the CCW TMDL monitoring data, box plots have been created for site and constituent combinations representing the data gathered over the entire monitoring program. The data being presented includes all constituents with TMDL limits for water or sediment at the sites where the constituents were analyzed. Where TMDL limits are effective, those thresholds have been identified for the sites where they apply. As appropriate, data for constituents with specific dry or wet weather limits are presented separately. Data collected during year six, which is the reporting period for this document, has been overlain on the box plots as circles. This was done to allow for easy comparison between recent data and what have been collected overall. The sixth year data are presented in tabular form below each box plot. Each figure of box plots presents data from either receiving water sites or land use sites. The receiving water sites are color coded by subwatershed as shown in Table 7. Land use and POTW sites are displayed together and grouped by type as presented in Table 8.

Fish tissue data are not displayed as box plots. Fish tissue data are presented in tables due to the small number of samples and to preserve the species information associated with each sample.

Toxicity data and TIE results are summarized in Appendix D. Summaries of the 2013-14 monitoring events are included as Appendix A.

Some TMDL constituents were never, or rarely detected (less than 2 percent detection rate) and therefore, did not warrant a data summary. The constituents, which were never detected, include:

In Water: In Sediment:

- Endosulfan II
- Endrin
- Endrin
- BHC, gamma

Rarely detected constituents in water are as follows:

- Aldrin (four detects, none this year)
- Dieldrin (three detects, one this year)
- Endosulfan I (three detects, none this year)
- BHC, gamma (three detects, none this year)
- Total PCBs (five detects, three this year)

Rarely detected constituents in sediment are as follows:

• Dieldrin (one detect, none this year)

Table 7. Receiving Water Sites Color Coded by Subwatershed

Subwatershed	Reach	Site ID
Mugu Lagoon	Reach 1	01_BPT_14
	Reach 1	01_BPT_15
	Reach 1	01_BPT_3
	Reach 1	01_BPT_6
	Reach 1	01_RR_BR
	Reach 1	01_SG_74
Calleguas	Reach 2	02_PCH
	Reach 3	03_UNIV
	Reach 9B ¹	09A_HOWAR ¹
Revolon Slough	Reach 4	04_WOOD
	Reach 5	05_CENTR
Las Posas	Reach 6	06_SOMIS
Arroyo Simi	Reach 7	07_HITCH
	Reach 7	07_MADER
Conejo	Reach 9A ¹	09B_ADOLF ¹
	Reach 9A ¹	09B_BARON 1
	Reach 10	10_GATE
	Reach 12	12_PARK
	Reach 13	13_BELT

^{1.} In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched. For consistency with the TMDLs and site naming conventions, the original reach designations have been maintained.

Table 8. Land Use and POTW Sites Color Coded by Type

Urban Land Use (MS4) Sites:

Reach 4	04D_VENTURA
Reach 7	07D_CTP
Reach 7	07T_DC_H
Reach 9A ¹	09BD_ADOLF ¹
Reach 13	13_SB_HILL

Ag Land Use Sites:

Reach 1	01T_ODD2_DCH
Reach 2	02D_BROOM
Reach 4	04D_WOOD
Reach 5	05D_SANT_VCWPD
Reach 6	06T_FC_BR
Reach 7	07D_HITCH_LEVEE_2
Reach 9A ¹	09BD_GERRY 1

POTW Sites:

Reach 7	07D_SIMI
Reach 9B ¹	09AD_CAMA ¹
Reach 10	10D_HILL

^{1.} In the 2012 updates to the Los Angeles Region Basin Plan, the reach designations for 9A and 9B were switched. For consistency with the TMDLs and site naming conventions, the original reach designations have been maintained.

OC PESTICIDES TMDL DATA SUMMARY

The following figures present OC pesticides data in both water and sediment. Presently, only the POTWs have effective interim limits in water but water data for all sites is provided since the TMDL specifies final targets for OC pesticides in water. Effective interim allocations for agriculture and waste load allocations for urban dischargers are provided in the appropriate OC pesticides in sediment figures. Bolded values in the tables within each figure indicate the concentration was above the applicable limits for that constituent. Italicized values in the tables within each figure indicate the concentration was detected but not quantifiable (DNQ). Values in the tables within each figure with a "<" preceding it, indicate the constituent was not detected (ND) at the method detection limit (MDL) for that constituent.

Figure 10. 4,4'-DDD Water Column Concentrations in Receiving Water Sites: 2008-2014

4,4'-DDD in Water from Urban, Ag, & POTW Sites: 2008-2014 (current reporting year data are shown within the box plots)

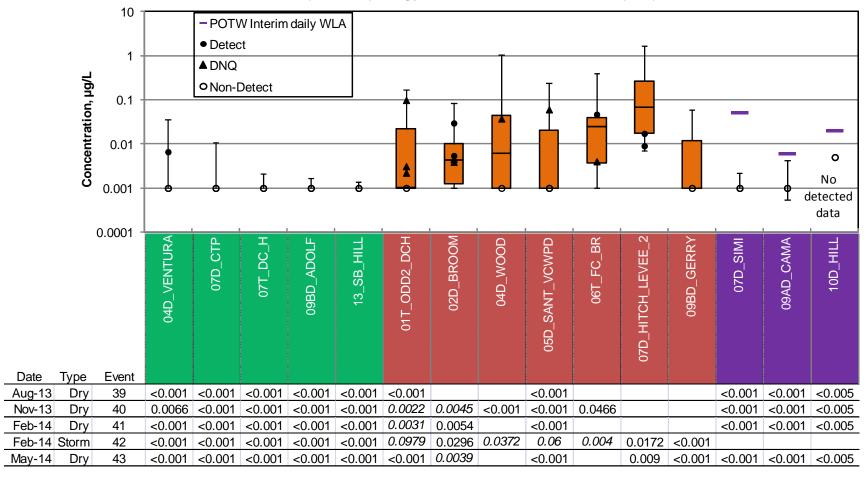


Figure 11. 4,4'-DDD Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2014

4,4'-DDE in Receiving Water Sites: 2008-2014 (current reporting year data are shown within the box plots)

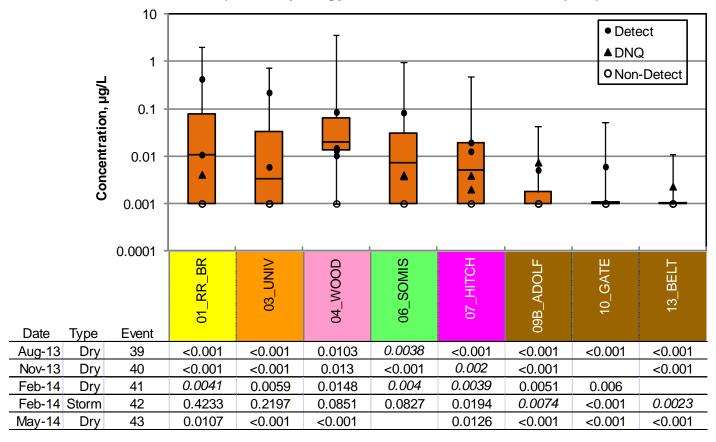


Figure 12. 4,4'-DDE Water Column Concentrations in Receiving Water Sites: 2008-2014

4,4'-DDE in Water from Urban, Ag, & POTW Sites: 2008-2014 (current reporting year data are shown within the box plots) 10 - POTW Interim daily WLA Detect **▲** DNQ Concentration, µg/L O Non-Detect 0.1 0.01 0 No 0.001 detected data 0.0001 02D_BROOM 04D_VENTURA 07T_DC_H 09BD_ADOLF 01T_ODD2_DCH H. 07D_HITCH_LEVEE_2 04D_WOOD 09BD_GERRY O7D_SIMI 09AD_CAMA 07D_CTP 븊 05D_SANT_VCWPD 10D_HILL 06T_FC_ SB 13 Type Date Event < 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Aug-13 Dry 39 < 0.001 < 0.001 <0.001 <0.005 Nov-13 Dry 40 0.0036 < 0.001 <0.001 < 0.001 < 0.001 | 0.0117 | 0.0269 0.006 0.0044 0.4061 < 0.001 < 0.001 < 0.005 0.0016 Feb-14 41 Dry < 0.001 <0.001 <0.001 < 0.001 <0.001 0.0221 0.0218 <0.001 | <0.001 | <0.005 0.0023 0.0063 0.2792 | 0.1322 | 0.3637 | 0.2477 | 0.0566 | 0.1519 | 0.0177 Feb-14 Storm 42 0.0041 0.0031 0.0021

Figure 13. 4,4'-DDE Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2014

< 0.001

< 0.001 0.0143

May-14

Dry

43

< 0.001

<0.001 <0.001 <0.001 <0.001

0.0845 < 0.001 < 0.001 < 0.001 < 0.005

4,4'-DDT in Receiving Water Sites: 2008-2014 (current reporting year data are shown within the box plots)

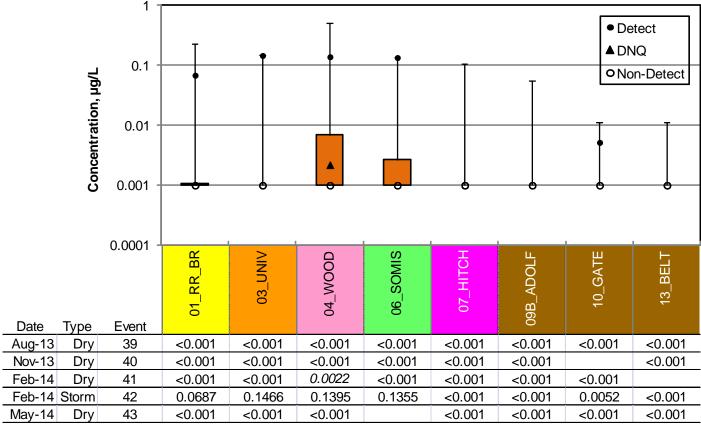


Figure 14. 4,4'-DDT Water Column Concentrations in Receiving Water Sites: 2008-2014

4,4'-DDT in Water from Urban, Ag, & POTW Sites: 2008-2014 (current reporting year data are shown within the box plots)

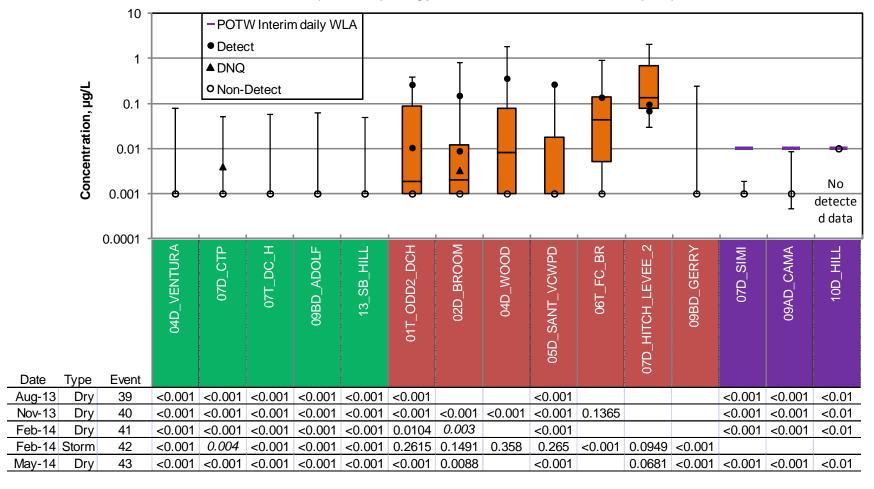


Figure 15. 4,4'-DDT Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2014

Total Chlordane in Receiving Water Sites: 2008-2014 (current reporting year data are shown within the box plots)

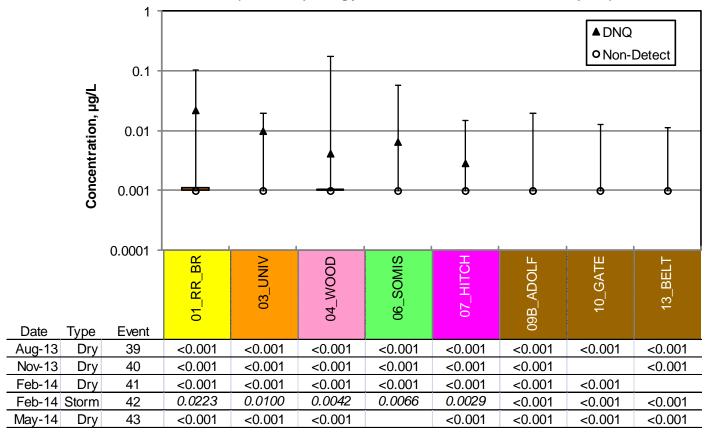


Figure 16. Total Chlordane Water Column Concentrations in Receiving Water Sites: 2008-2014

Total Chlordane in Water from Urban, Ag, & POTW Sites: 2008-2014 (current reporting year data are shown within the box plots)

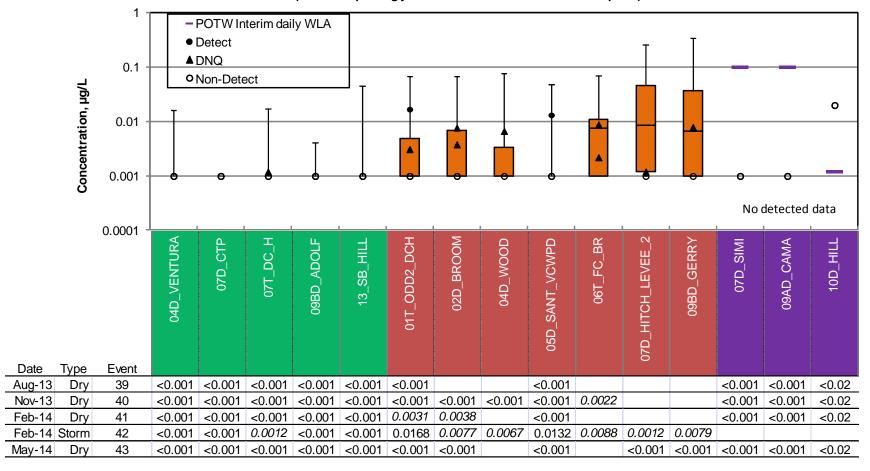


Figure 17. Total Chlordane Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2014

Toxaphene in Receiving Water Sites: 2008-2014 (current reporting year data are shown within the box plots)

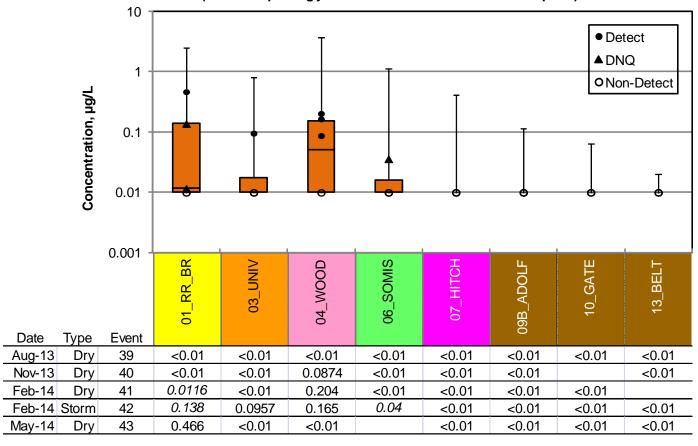


Figure 18. Toxaphene Water Column Concentrations in Receiving Water Sites: 2008-2014

Toxaphene in Water from Urban, Ag, & POTW Sites: 2008-2014 (current reporting year data are shown within the box plots) 10 - POTW Interim daily WLA Detect **▲** DNQ O Non-Detect Concentration, µg/L 0.1 0.01 No detected data 0.001 01T_ODD2_DCH 02D_BROOM BH 09BD_GERRY 04D_VENTURA 07T_DC_H 04D_WOOD 09BD_ADOLF 05D_SANT_VCWPD 07D_SIMI 09AD_CAMA 07D_CTP 13_SB_HILL 10D_HILL 07D_HITCH_LEVEE_ 06T_FC_ Type Event Aug-13 Dry 39 <0.01 <0.01 <0.01 < 0.01 <0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.5 <0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.085 0.159 2.488 < 0.01 < 0.01 40 0.137 < 0.5 Nov-13 Dry <0.01 0.026 0.112 0.041 Feb-14 Dry 41 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.5 0.138 0.269 0.035 0.012 Feb-14 Storm 42 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.295 0.686 0.105

Figure 19. Toxaphene Water Column Concentrations in Urban, Ag, and POTW Sites: 2008-2014

0.012

0.115

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

43

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

Date

May-14

Dry

< 0.5

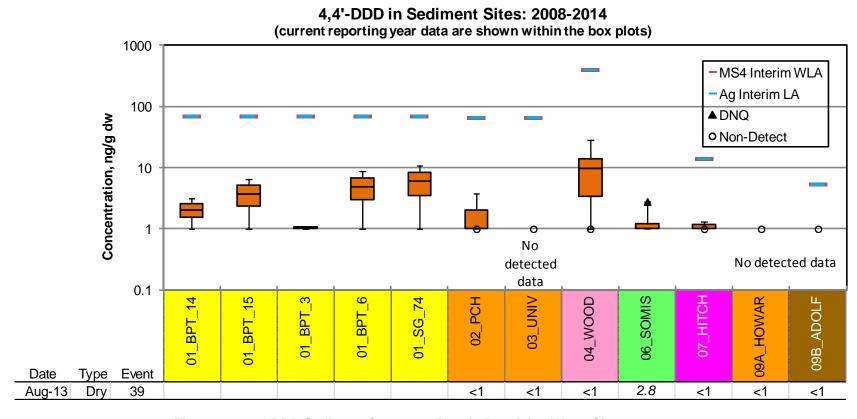


Figure 20. 4,4'-DDD Sediment Concentrations in Receiving Water Sites: 2008-2014

4,4'-DDE in Sediment Sites: 2008-2014 (current reporting year data are shown within the box plots) 10000 -MS4 Interim WLA - Ag Interim LA Detect 1000 **▲** DNQ Concentration, ng/g dw 100 10 1 0.1 01_BPT_6 SIMOS_90 01_BPT_14 01_BPT_15 01_BPT_3 03_UNIV 04_WOOD 09A_HOWAR 09B_ADOLF 01_SG_74 02_PCH 07_HITCH Type **Event** Date

Figure 21. 4,4'-DDE Sediment Concentrations in Receiving Water Sites: 2008-2014

7.5

1.6

39.9

10.4

2.5

Aug-13

Dry

39

3.4

1.8

4,4'-DDT in Sediment Sites: 2008-2014 (current reporting year data are shown within the box plots)

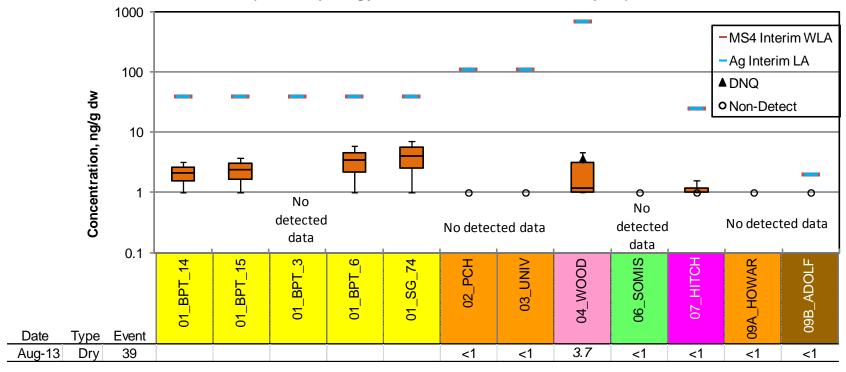


Figure 22. 4,4'-DDT Sediment Concentrations in Receiving Water Sites: 2008-2014

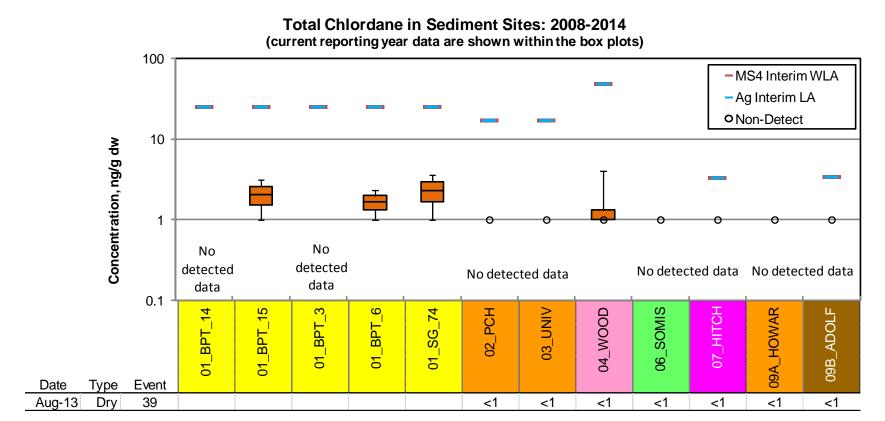


Figure 23. Total Chlordane Sediment Concentrations in Receiving Water Sites: 2008-2014

Toxaphene in Sediment Sites: 2008-2014 (current reporting year data are shown within the box plots)

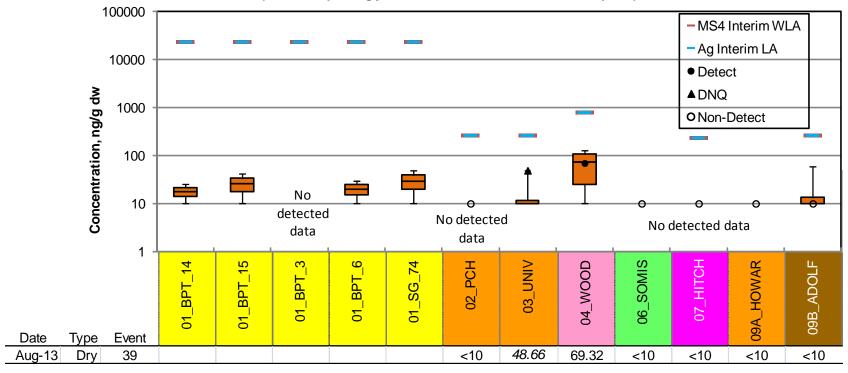


Figure 24. Toxaphene Sediment Concentrations in Receiving Water Sites: 2008-2014

METALS TMDL DATA SUMMARY

The following figures present metals water quality data from receiving water, agricultural, urban, and POTW monitoring sites. Currently effective total metals interim load allocations and waste load allocations differ for wet and dry weather, therefore the data for each of these conditions is provided separately. Interim POTW waste load allocations for total mercury are in load form and are therefore calculated and presented in the compliance section of the report. The Metals TMDL specifies final targets for both dissolved copper and zinc. Dissolved concentrations for these two metals have been plotted for reference. Bolded values in the tables within each figure indicate the concentration was above the applicable limits for that constituent. Italicized values in the tables within each figure indicate the concentration was DNQ. Values in the tables within each figure with a "<" preceding them, indicate the constituent was ND at the MDL for that constituent.

Total Copper in Receiving Water Sites: 2008-2014 Dry Weather (current reporting year data are shown within the box plots) 100 10 Concentration, µg/L -MS4 Interim WLA 0.1 - Ag Interim LA Detect 0.01 BPT_14 01_BPT_15 01_BPT_3 01_BPT_6 01_SG_74 01_RR_BR 03_UNIV 04_WOOD Date **Event** Aug-13 39 0.561 0.157 0.252 0.202 0.539 0.249 2.282 4.683 Nov-13 40 0.405 0.429 3.516 0.556 2.2 3.804 0.304 1.491 Feb-14 0.58 41 1.084 0.37 0.241 0.313 1.726 2.78 5.694 0.922 0.28 2.537 May-14 43 0.315 0.688 1.049 2.554 2.781

Figure 25. Total Copper Dry Weather Concentrations in Receiving Water Sites: 2008-2014

Total Copper in Receiving Water Sites: 2008-2014 Stormwater (current reporting year data are shown within the box plots)

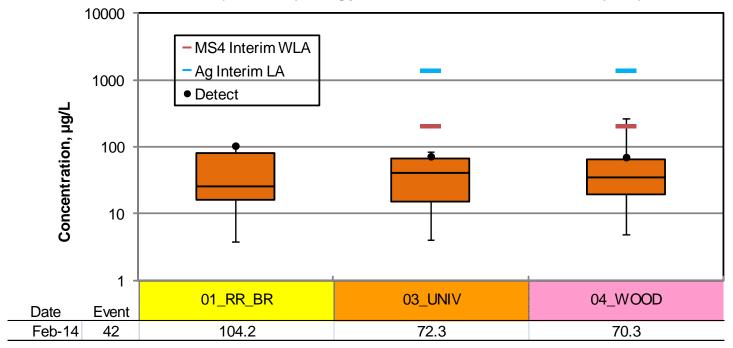


Figure 26. Total Copper Stormwater Concentrations in Receiving Water Sites: 2008-2014

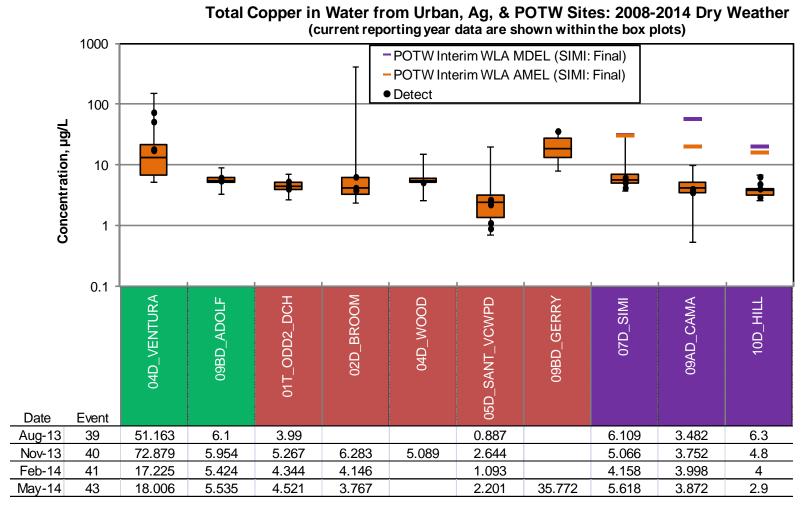


Figure 27. Total Copper Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2014

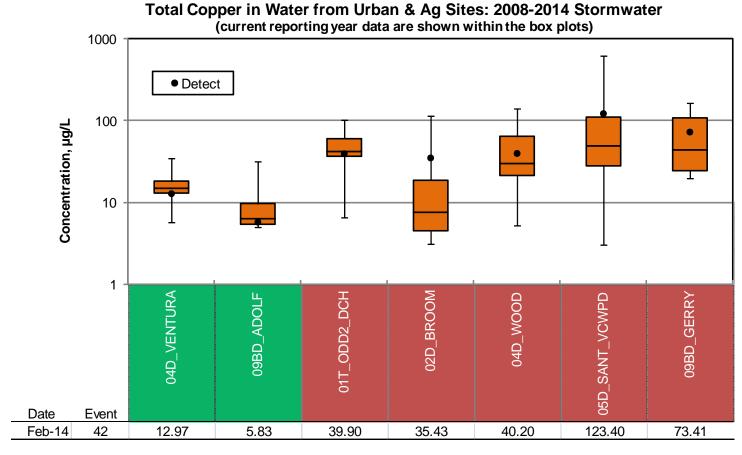


Figure 28. Total Copper Wet Weather Concentrations in Urban and Ag Sites: 2008-2014

Dissolved Copper in Receiving Water Sites: 2008-2014 (current reporting year data are shown within the box plots)

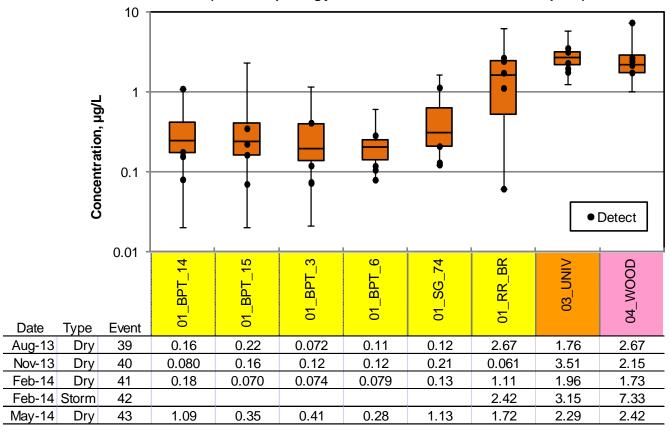


Figure 29. Dissolved Copper Concentrations in Receiving Water Sites: 2008-2014

Dissolved Copper in Water from Urban, Ag, & POTW Sites: 2008-2014 (current reporting year data are shown within the box plots)

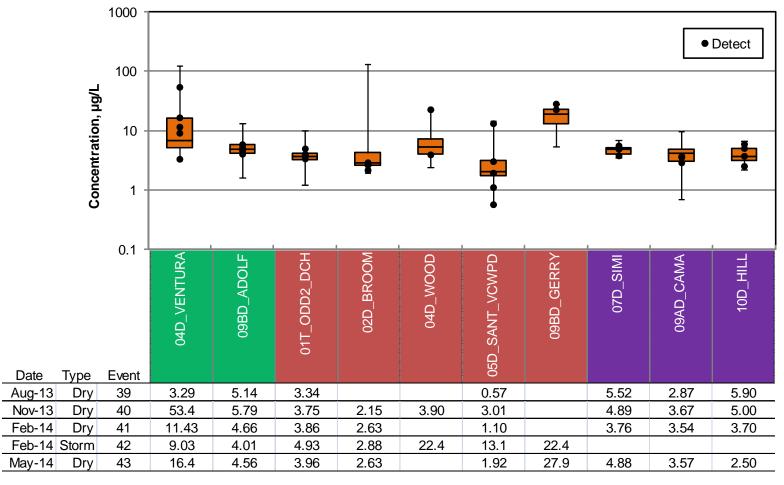


Figure 30. Dissolved Copper Concentrations in Urban, Ag, and POTW Sites: 2008-2014

Total Mercury in Receiving Water Sites: 2008-2014 (current reporting year data are shown within the box plots)

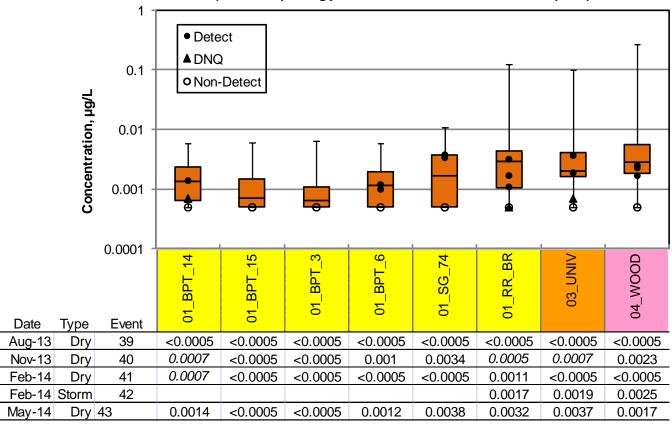


Figure 31. Total Mercury Concentrations in Receiving Water Sites: 2008-2014

Total Mercury in Water from Urban, Ag, & POTW Sites: 2008-2014 (current reporting year data are shown within the box plots)

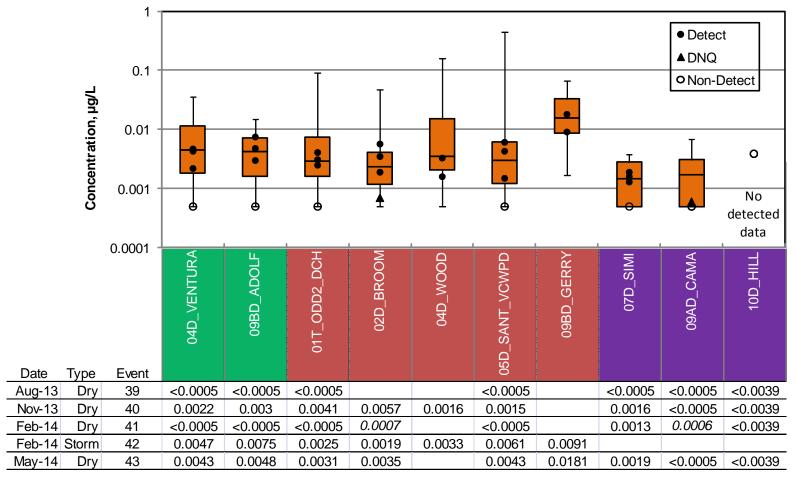


Figure 32. Total Mercury Concentrations in Urban and Ag Sites: 2008-2014

Total Nickel in Receiving Water Sites: 2008-2014 Dry Weather (current reporting year data are shown within the box plots)

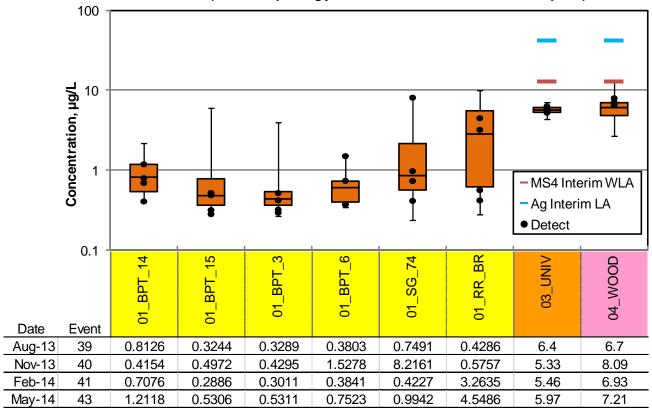


Figure 33. Total Nickel Dry Weather Concentrations in Receiving Water Sites: 2008-2014

Total Nickel in Receiving Water Sites: 2008-2014 Stormwater (current reporting year data are shown within the box plots)

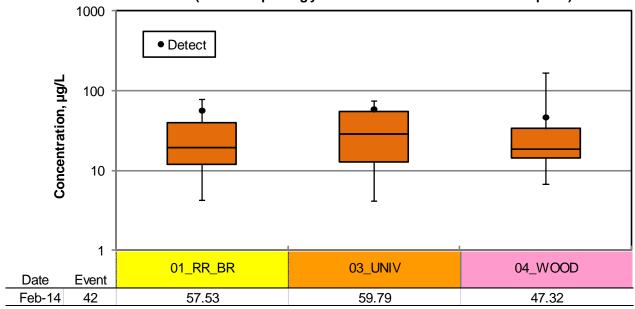


Figure 34. Total Nickel Stormwater Concentrations in Receiving Water Sites: 2008-2014

Total Nickel in Water from Urban, Ag, & POTW Sites: 2008-2014 Dry Weather (current reporting year data are shown within the box plots)

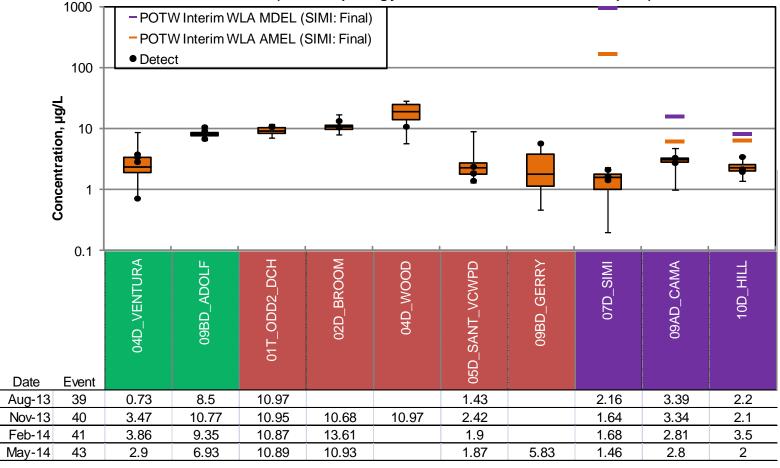


Figure 35. Total Nickel Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2014

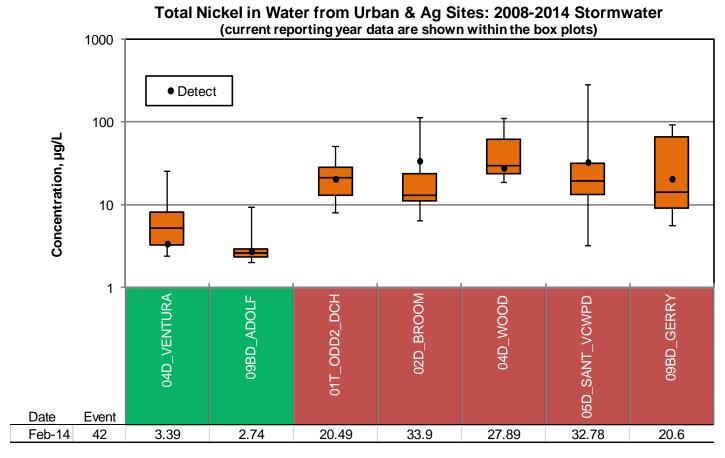


Figure 36. Total Nickel Stormwater Concentrations in Urban and Ag Sites: 2008-2014

Dissolved Nickel in Receiving Water Sites: 2008-2014 (current reporting year data are shown within the box plots)

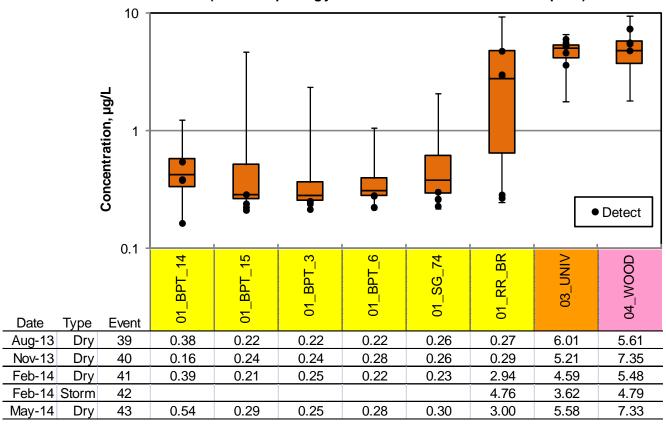


Figure 37. Dissolved Nickel Concentrations in Receiving Water Sites: 2008-2014

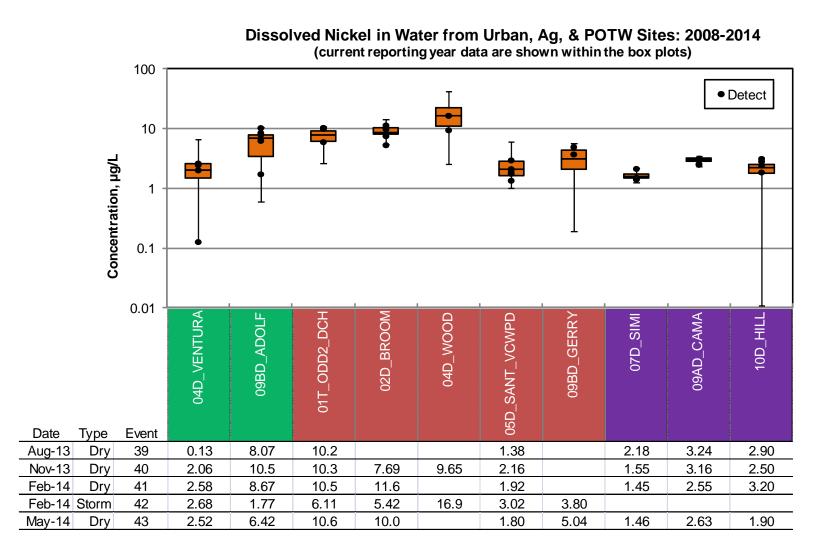


Figure 38. Dissolved Nickel Concentrations in Urban, Ag, and POTW Sites: 2008-2014

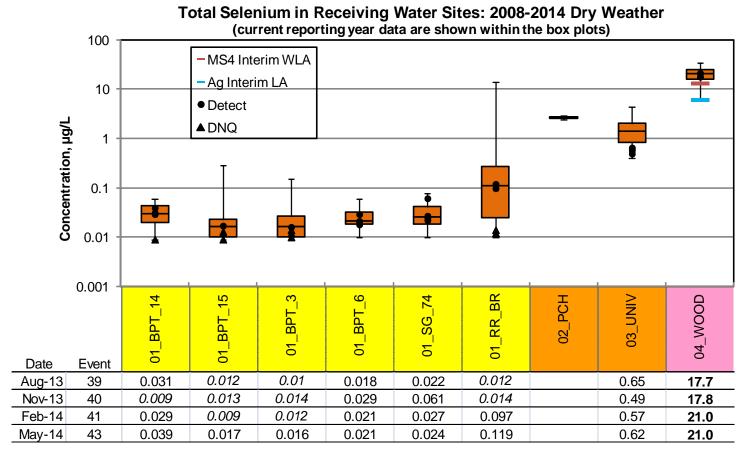


Figure 39. Total Selenium Dry Weather Concentrations in Receiving Water Sites: 2008-2014

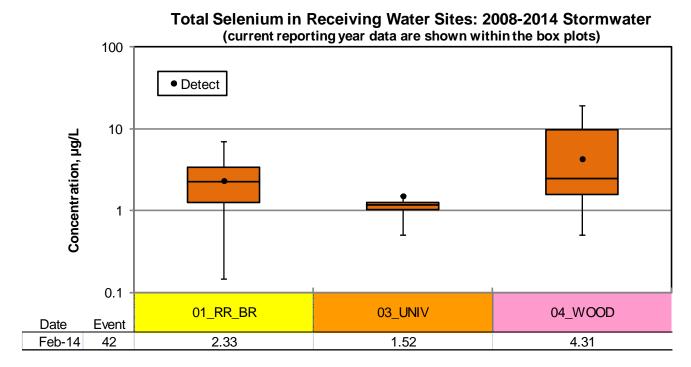


Figure 40. Total Selenium Stormwater Concentration in Receiving Water Sites: 2008-2014

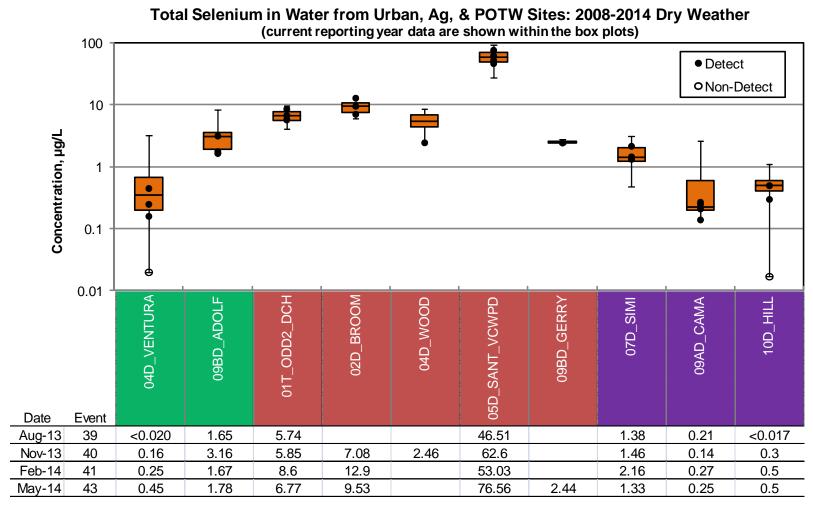


Figure 41. Total Selenium Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2014

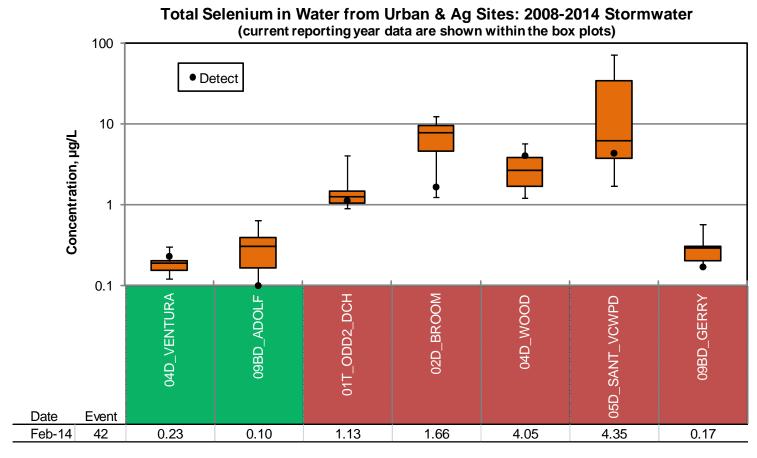


Figure 42. Total Selenium Stormwater Concentrations in Urban and Ag Sites: 2008-2014

Figure 43. Dissolved Zinc Concentrations in Receiving Water Sites: 2008-2014

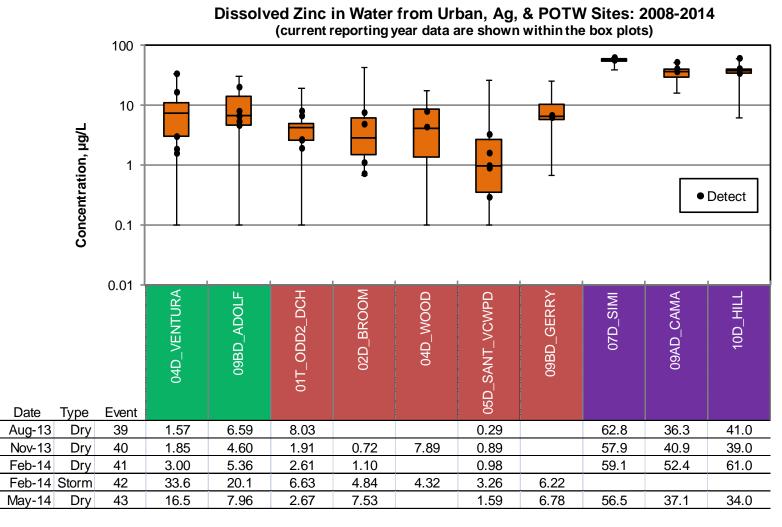


Figure 44. Dissolved Zinc Concentrations in Urban, Ag, and POTW Sites: 2008-2014

TOXICITY TMDL

For the Toxicity TMDL, urban dischargers' final WLAs are effective as well as interim LAs for agricultural dischargers. The compliance points for these allocations are in the receiving waters at the base of the subwatersheds and are shown on the box plots for the appropriate site locations. Data for chlorpyrifos and diazinon has been separated into dry weather and stormwater since the allocations differ for the two conditions. Bolded values in the tables within each figure indicate the concentration was above the applicable limits for that constituent. Italicized values in the tables within each figure indicate the concentration was DNQ. Values in the tables within each figure with a "<" preceding them, indicate the constituent was ND at the MDL for that constituent.

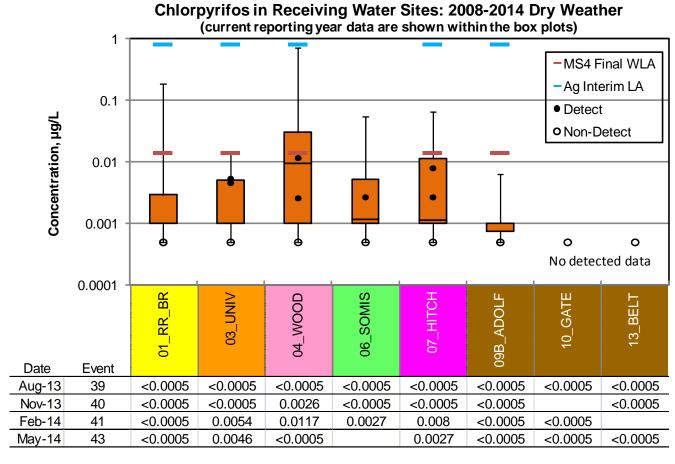


Figure 45. Chlorpyrifos Dry Weather Concentrations in Receiving Water Sites: 2008-2014

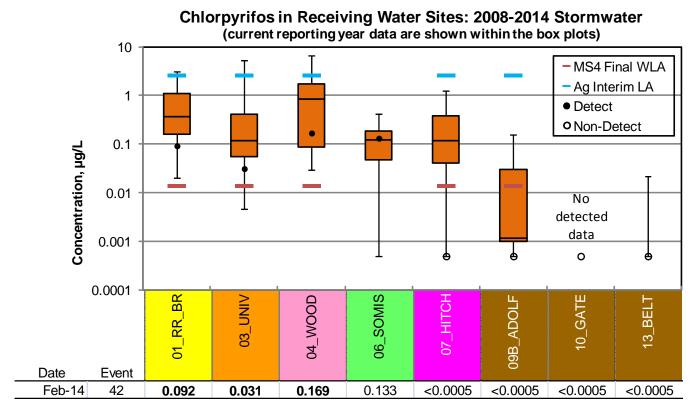


Figure 46. Chlorpyrifos Stormwater Concentrations in Receiving Water Sites: 2008-2014

Chlorpyrifos in Water from Urban, Ag, & POTW Sites: 2008-2014 Dry Weather (current reporting year data are shown within the box plots)

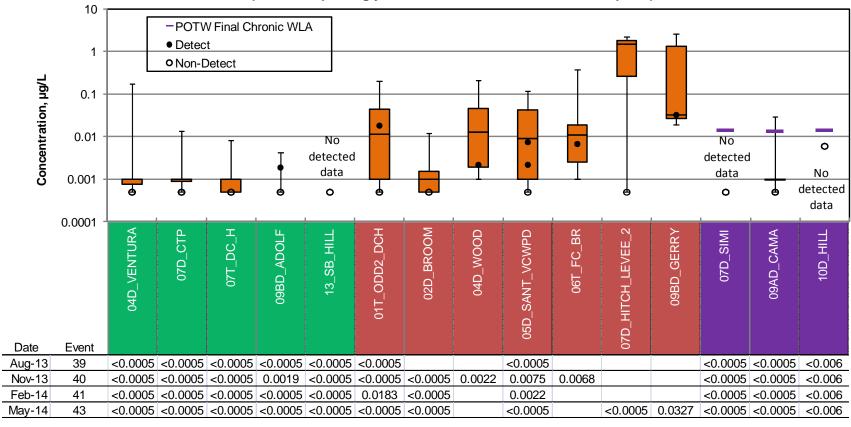


Figure 47. Chlorpyrifos Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2014

Chlorpyrifos in Water from Urban & Ag Sites: 2008-2014 Stormwater (current reporting year data are shown within the box plots)

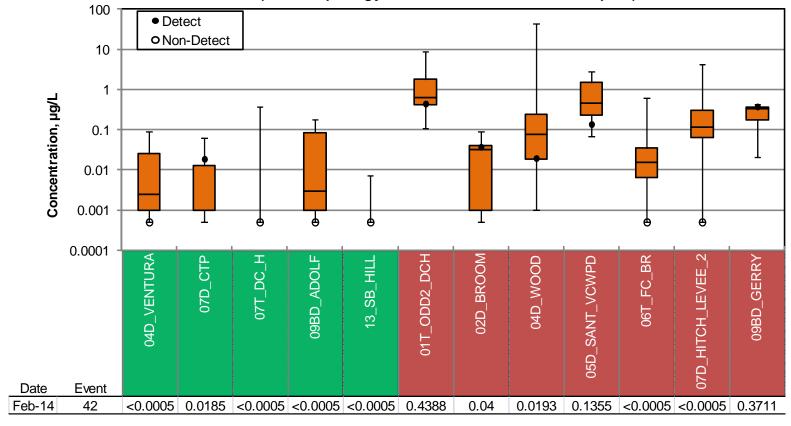


Figure 48. Chlorpyrifos Stormwater Concentrations in Urban and Ag Sites: 2008-2014

Diazinon in Receiving Water Sites: 2008-2014 Dry Weather (current reporting year data are shown within the box plots)

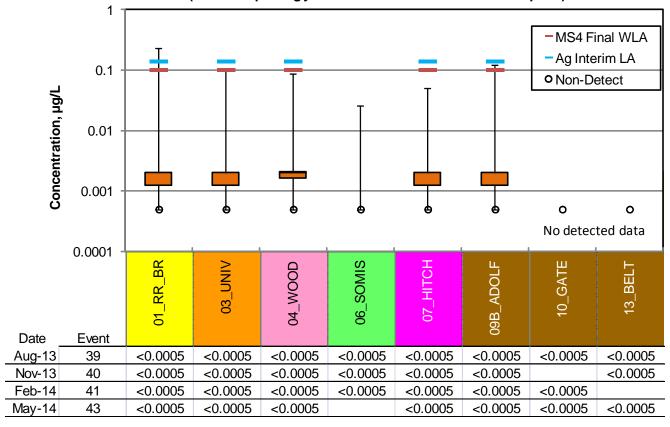


Figure 49. Diazinon Dry Weather Concentrations in Receiving Water Sites: 2008-2014

Diazinon in Receiving Water Sites: 2008-2014 Stormwater (current reporting year data are shown within the box plots) - MS4 Final WLA - Ag Interim LA 0.1 Detect Concentration, µg/L O Non-Detect 0.01 0.001 0 0 No detected data 0.0001 01_RR_BR 10_GATE 03_UNIV SIMOS_90 HITCH 04_WOOD 09B_ADOLF 13_BELT 07

Figure 50. Diazinon Stormwater Concentrations in Receiving Water Sites: 2008-2014

< 0.0005

0.0158

< 0.0005

< 0.0005

< 0.0005

0.0232

Date

Feb-14

Event

42

0.0095

0.0094

Diazinon in Water from Urban, Ag, & POTW Sites: 2008-2014 Dry Weather (current reporting year data are shown within the box plots)

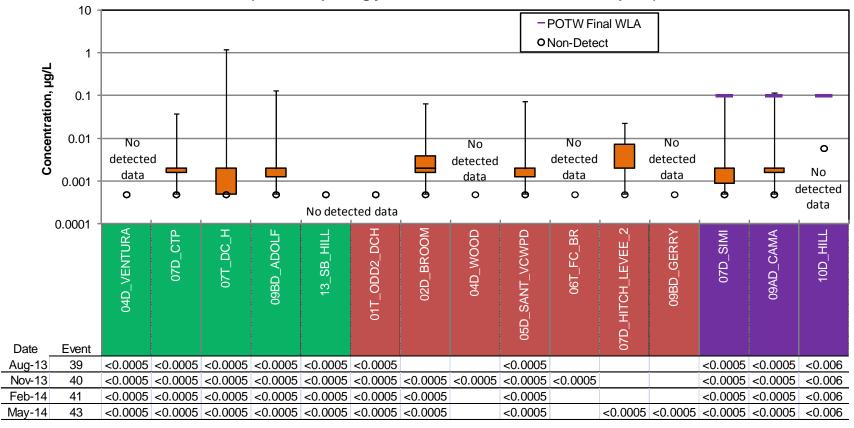


Figure 51. Diazinon Dry Weather Concentrations in Urban, Ag, and POTW Sites: 2008-2014

Diazinon in Water from Urban & Ag Sites: 2008-2014 Stormwater (current reporting year data are shown within the box plots)

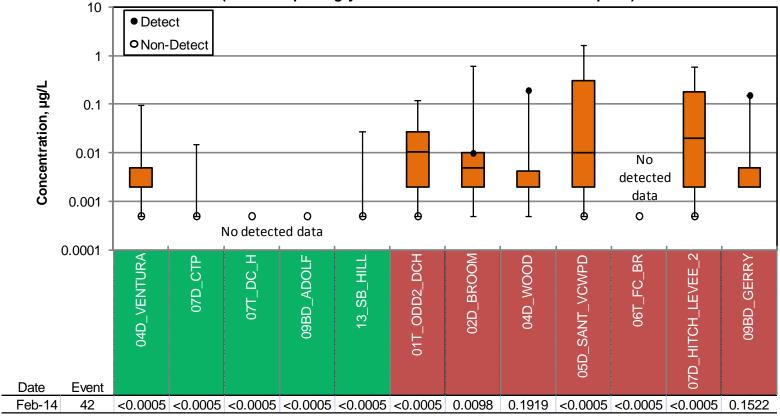


Figure 52. Diazinon Stormwater Concentrations in Urban and Ag Sites: 2008-2014

NUTRIENTS TMDL

Final targets and allocations are effective for the Nutrients TMDL. The applicable targets for each monitoring site are presented in the figures below. Bolded values in the tables within each figure indicate the concentration was above the applicable limits for that constituent. Italicized values in the tables within each figure indicate the concentration was DNQ. Values in the tables within each figure with a "<" preceding them, indicate the constituent was ND at the MDL for that constituent.

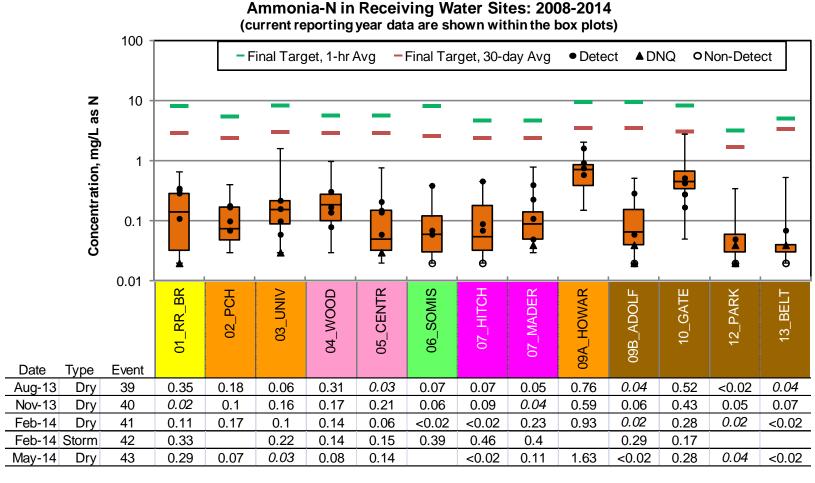


Figure 53. Ammonia-N Concentrations in Receiving Water Sites: 2008-2014

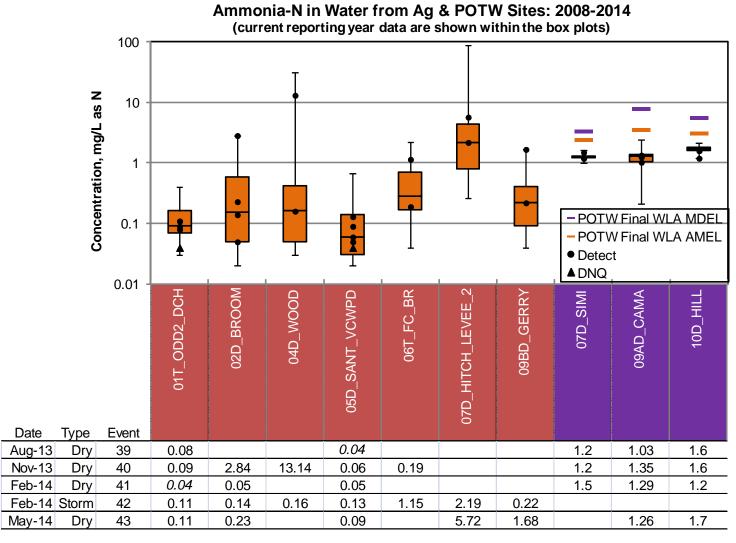


Figure 54. Ammonia-N Concentrations in Ag and POTW Sites: 2008-2014

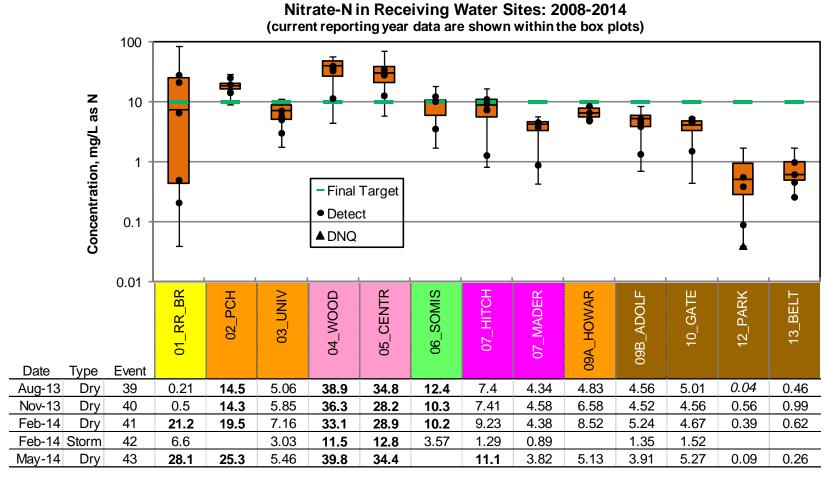


Figure 55. Nitrate-N Concentrations in Receiving Water Sites: 2008-2014

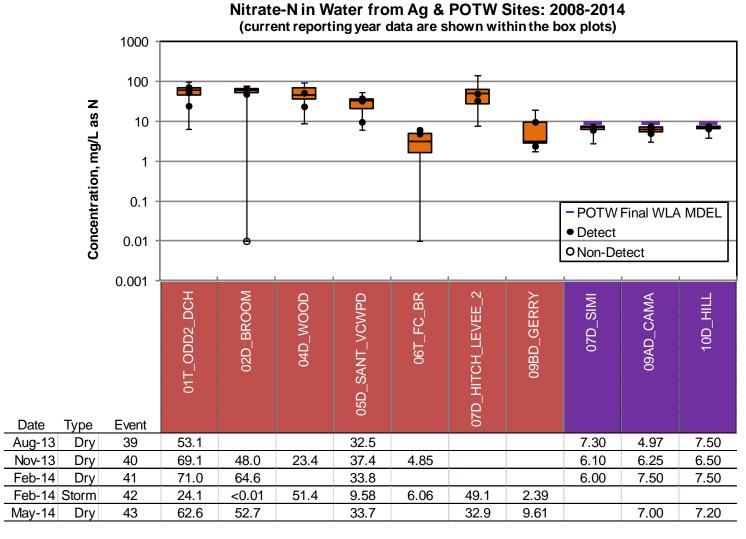


Figure 56. Nitrate-N Concentrations in Ag and POTW Sites: 2008-2014

Figure 57. Nitrite-N Concentrations in Receiving Water Sites: 2008-2014

Nitrite-N in Water from Ag & POTW Sites: 2008-2014 (current reporting year data are shown within the box plots) 10 Concentration, mg/L as N 0.1 0.01 No POTW Final WLA MDEL • Detect detected **▲** DNQ O Non-Detect data 0.001 02D_BROOM 01T_ODD2_DCH 07D_HITCH_LEVEE_2 09BD_GERRY 10D_HILL 04D_WOOD 05D_SANT_VCWPD 06T_FC_BR 07D_SIMI 09AD_CAMA **Event** Dry 39 0.2 0.11 0.014 < 0.01

0.02

0.24

1.24

1.19

0.13

0.27

Figure 58. Nitrite-N Concentrations in Ag and POTW Sites: 2008-2014

0.03

0.05

0.13

0.15

Type

Dry

Dry

Dry

40

41

42

43

0.05

0.08

0.16

0.61

0.08

0.07

0.07

0.15

3.87

0.26

Date

Aug-13

Nov-13

Feb-14

May-14

Feb-14 Storm

<0.1

< 0.1

< 0.1

< 0.1

0.013

0.019

< 0.01

0.1

0.1

Nitrate-N + Nitrite-N in Receiving Water Sites: 2008-2014 (current reporting year data are shown within the box plots)

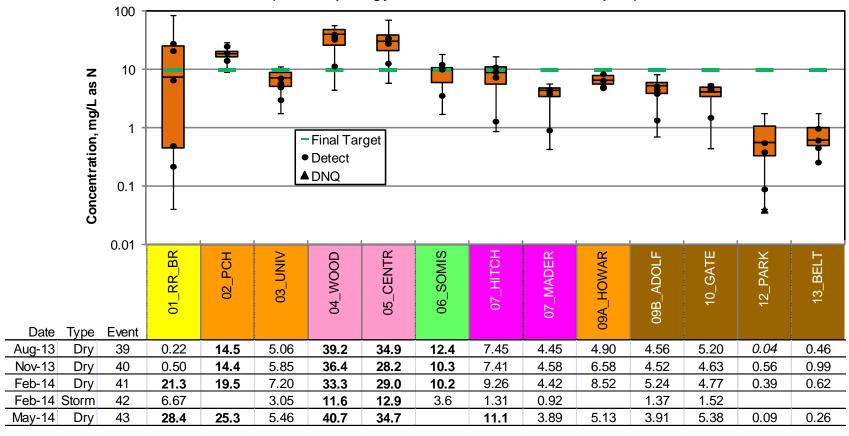


Figure 59. Nitrate-N + Nitrite-N Concentrations in Receiving Water Sites: 2008-2014

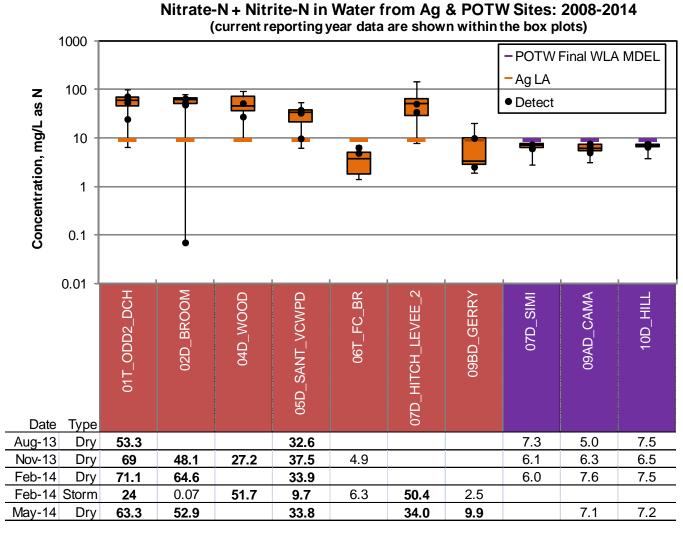


Figure 60. Nitrate-N + Nitrite-N Concentrations in Ag and POTW Sites: 2008-2014

SALTS TMDL

For the Salts TMDL, compliance with interim dry weather salt allocations is determined using monthly mean salt concentrations for dry weather developed from the time-series of data collected at receiving water sites. Bolded values in the tables within each figure indicate the concentration was above the interim MS4 WLA and the interim LA for that constituent. Italicized values in the tables within each figure indicate the concentration was above the interim MS4 WLA for that constituent.

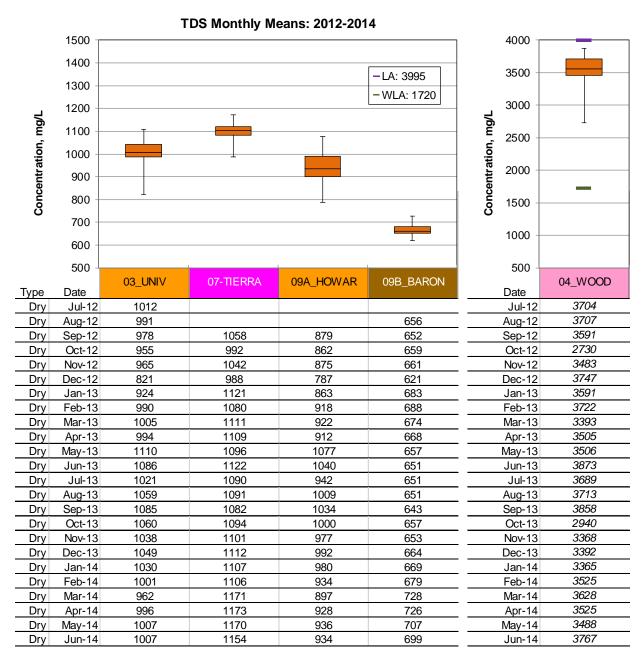


Figure 61. TDS Monthly Means for Receiving Water Sites Collected During Dry Weather

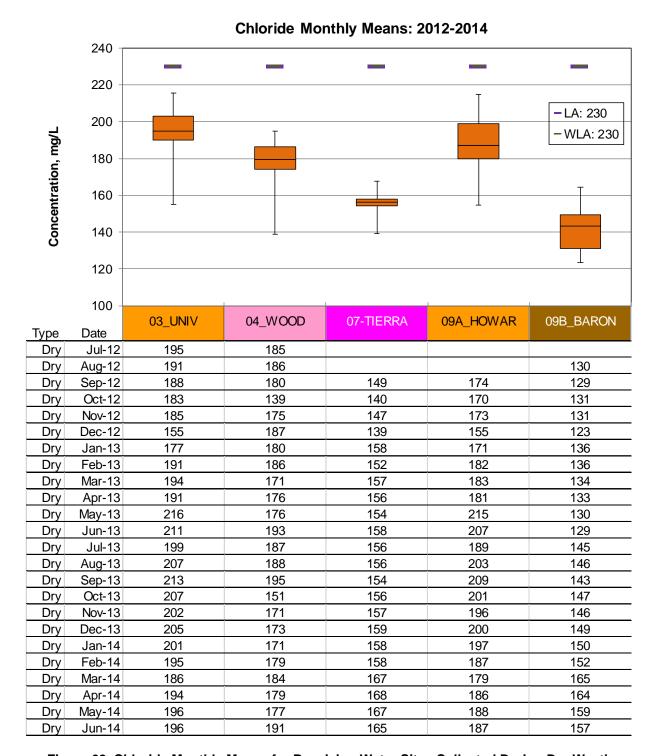


Figure 62. Chloride Monthly Means for Receiving Water Sites Collected During Dry Weather

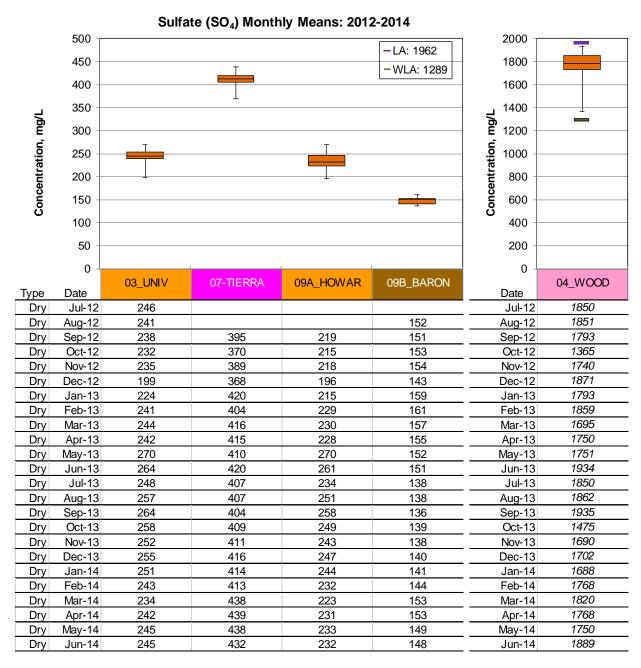


Figure 63. Sulfate Monthly Means for Receiving Water Sites Collected During Dry Weather

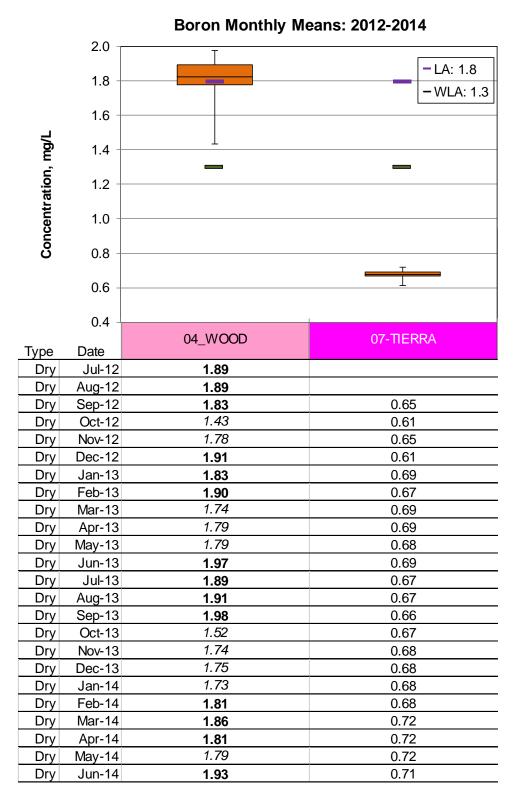


Figure 64. Boron Monthly Means for Receiving Water Sites Collected During Dry Weather

TISSUE DATA

Tissue data is provided in the following tables for both Mugu Lagoon and freshwater monitoring locations. These types of samples are only collected in Mugu Lagoon every three years; therefore data from years one and four are reported. For all tables, only those constituents that have been detected in at least one sample have been included.

Mugu Lagoon Tissue Data

Table 9. Mugu Lagoon – Central Lagoon Tissue Data ¹

		8/21/2008	8/21/2008	8/18/2011
Constituent	Units	Composite Mussel Sample	Whole Fish Composite Sample Top Smelt (Atherinops affinis)	Composite Mussel Sample
Lipids in Mussel/F	ish Tissue			
Percent Lipids	%	0.95	4.13	1.72
Organic Constitue	nts in Musse	l/Fish Tissue		
OC Pesticides				
2,4'-DDD	ng/g ww	7.5	ND	DNQ
2,4'-DDT	ng/g ww	ND	11.7	9.4
4,4'-DDD	ng/g ww	13.4	20.9	ND
4,4'-DDE	ng/g ww	125	406	118
4,4'-DDT	ng/g ww	ND	41.7	ND
Toxaphene	ng/g ww	94.4	294	DNQ
PCBs				
All Aroclors	ng/g ww	ND	ND	ND
Metals & Selenium	in Mussel/Fi	sh Tissue		
Total Mercury	μg/g ww	ND	0.02	0.0039
Total Selenium	μg/g ww	0.43	0.57	0.83

^{1.} Only constituents with detected values are included in the table.

Table 10. Mugu Lagoon – Western Arm Tissue Data ¹

Constituent	Units	8/19/2008 Composite Mussel Sample	8/19/2008 Composite Bait Fish Sample Top Smelt (Atherinops affinis)	8/19/2008 Flat Fish Fillet Sample Diamond Turbot (Hypsopsetta guttulata)	8/19/2008 Whole Perch Fish Sample Shiner Surfperch (Cymatogaster aggregate)	8/18/2011 Composite Mussel Sample
Lipids in Mussel/Fis	sh Tissue					
Percent Lipids	%	1.24	1.96	0.44	2.77	1.01
Organic Constituen	ts in Mussel	/Fish Tissue				
OC Pesticides						
Chlordane-alpha	ng/g ww	ND	ND	ND	12.7	ND
Chlordane-gamma	ng/g ww	ND	ND	ND	DNQ	ND
2,4'-DDD	ng/g ww	ND	ND	ND	9.2	DNQ
2,4'-DDE	ng/g ww	ND	ND	ND	ND	DNQ
2,4'-DDT	ng/g ww	ND	ND	ND	ND	DNQ
4,4'-DDD	ng/g ww	6.6	26.8	ND	139	ND
4,4'-DDE	ng/g ww	44	147	51	664	105
4,4'-DDT	ng/g ww	ND	ND	ND	79.4	ND
Toxaphene	ng/g ww	ND	ND	ND	117	ND
PCBs						
Aroclor 1254	ng/g ww	ND	ND	ND	55	ND
Metals & Selenium	in Mussel/Fi	sh Tissue				
Total Mercury	μg/g ww	DNQ	DNQ	DNQ	DNQ	0.012
Total Selenium	μg/g ww	0.37	0.51	0.92	0.52	0.48

Only constituents with detected values are included in the table.

86

Freshwater Tissue Data

Table 11. Calleguas Creek – University Drive CSUCI (03_UNIV) Fish Tissue Data Years 1-6 ¹

			Lipids				OC Pe	sticides	2				PCBs ²
Date	Fish		Percent Lipids	Chlordane -alpha	Chlordane -gamma	2,4'- DDD	2,4'- DDE	2,4'- DDT	4,4'- DDD	4,4'- DDE	4,4'- DDT	Toxaphene	Aroclor 1254
			%	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
8/6/08		Whole Fish	4.7	DNQ	ND	ND	6.6	ND	ND	373	ND	ND	ND
9/3/09	Arroyo	Comp. #1	4.2	25	11	24	38	97	127	2422	13	6397	54
9/3/09	Chub	Comp. #2	5.7	20	13	28	38	102	116	2782	20	5675	55
9/3/09		Comp. #3	6.0	32	15	31	45	117	175	2951	18	4300	56
9/3/09	Black	Carcass	2.5	43	22	22	13	ND	184	6980	469	6469	55
9/3/09	Bullhead	Fillet w/ Skin	1.3	29	13	12	ND	ND	90	3603	233	3283	32
9/3/09		Carcass #1	4.0	32	15	25	17	29	100	2209	240	4805	ND
9/3/09		Carcass #2	4.3	37	19	24	DNQ	16	112	2492	328	8510	21
9/3/09		Carcass #3	4.7	47	25	26	22	31	119	2744	466	ND	ND
9/3/09	Common Carp	Fillet w/ Skin #1	1.5	5.5	ND	DNQ	ND	10	21	413	46	ND	ND
9/3/09		Fillet w/ Skin #2	1.6	12	DNQ	13	ND	21	25	708	115	ND	ND
9/3/09		Fillet w/ Skin #3	1.9	7.5	DNQ	18	ND	33	45	772	140	ND	ND
9/3/10	Arroyo	0-85 mm	4.3	DNQ	DNQ	ND	DNQ	DNQ	DNQ	167	16	ND	ND
9/3/10	Chub	86-112 mm	7.0	DNQ	DNQ	DNQ	12	30	44	1300	20	646	ND
9/3/10	Comm	on Carp	4.3	DNQ	DNQ	DNQ	ND	DNQ	21	247	32	403	ND
8/25/11			1.9	DNQ	ND	DNQ	ND	8.5	ND	125	ND	DNQ	ND
8/30/12	Comm	Common Carp		ND	ND	ND	ND	ND	ND	175	ND	ND	ND
8/27/13	Fathead Green	n Composite d Minnow Sunfish on Carp	3.02	ND	ND	ND	ND	ND	ND	200.5	ND	ND	ND

^{1.} Only constituents with detected values are included in the table.

^{2.} Units are wet weight.

Table 12. Conejo Creek – Adolfo Road (9B_ADOLF) Fish Tissue Data Years 1 – 6 1,2

			Lipids				OC Pe	sticides	3				PCBs ³
Date		Fish	Percent Lipids	Chlordane -alpha	Chlordane -gamma	2,4'- DDD	2,4'- DDE	2,4'- DDT	4,4'- DDD	4,4'- DDE	4,4'- DDT	Toxaphene	Aroclor 1254
			%	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
8/6/08	Common Carp		3.5	ND	ND	ND	ND	ND	ND	111	54	ND	ND
9/3/09	Comp. #1		8.6	19	8.2	10	22	54	47	694	14	3611	ND
9/3/09	chub	Comp. #2	9.5	18	5.2	15	15	40	37	646	21	3213	56
9/3/09		Comp. #3	8.4	18	6.8	16	21	43	61	629	ND	2766	67
9/3/09		Carcass #1	2.5	21	6.0	15	ND	ND	27	754	ND	ND	54
9/3/09		Fillet w/ Skin #1	0.8	ND	ND	ND	ND	ND	10	190	ND	ND	ND
9/3/09	Common	Carcass #2	4.8	49	24	18	ND	ND	170	3643	99	3566	93
9/3/09	Common Carp	Fillet w/ Skin #2	1.6	10	5.4	8.6	ND	ND	43	1019	30	ND	26
9/3/09		Carcass Comp. #3	4.0	27	15	19	12	131	58	1019	190	2544	70
9/3/09		Fillet Comp. w/ Skin #3	1.8	DNQ	ND	25	ND	57	37	274	86	ND	ND
9/3/10	Arroyo	0-85 mm	4.9	DNQ	ND	DNQ	DNQ	11	21	626	17	487	ND
9/3/10	chub	86-112 mm	6.6	DNQ	DNQ	ND	DNQ	DNQ	DNQ	137	14	ND	ND
8/25/11	1 Common carp		2.4	DNQ	DNQ	ND	ND	DNQ	ND	49	ND	DNQ	ND
8/27/13	Large	mouth Bass	1.28	ND	ND	ND	ND	ND	ND	85.7	ND	ND	ND

^{1.} Only constituents with detected values are included in the table.

^{2.} No fish were caught at this site during year five.

^{3.} Units are wet weight.

Table 13. Arroyo Simi – Hitch Boulevard (07_HITCH) Fish Tissue Data Years 1 – 6 1,2

				Lipids			OC P	esticides	3				PCBs ³
Date		Fish		Percent Lipids	Chlordane -alpha	Chlordane -gamma	2,4'- DDD	2,4'- DDE	2,4'- DDT	4,4'- DDD	4,4'- DDE	4,4'- DDT	Aroclor 1254
				%	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
8/6/08	Arroyo Chub	Composite		8.3	ND	ND	ND	DNQ	ND	ND	521	ND	ND
9/3/09		Composite #1	43-60mm	9.5	DNQ	ND	20	ND	52	233	955	ND	ND
9/3/09		Composite #1	65-90mm	10.6	ND	ND	5.3	DNQ	12	15.8	365	ND	ND
9/3/09	Arroyo	Composite #2	43-60mm	9.7	DNQ	ND	33	ND	749	437	1183	ND	ND
9/3/09	Chub	Composite #2	65-90mm	10.5	DNQ	ND	32	14.6	74	195	1648	26	28
9/3/09		Composite #3	43-60mm	8.3	DNQ	ND	26	ND	45	343	967	ND	ND
9/3/09		Composite #3	65-90mm	11.3	6.6	ND	27	ND	57	110	1275	38	ND
9/3/10		Arroyo Chub		7.8	ND	ND	DNQ	DNQ	19	19.2	673	DNQ	ND
8/28/13	V	Vhole Fish Compo Largemouth Bas Goldfish		11.98	ND	ND	ND	ND	ND	ND	ND	ND	ND

^{1.} Only constituents with detected values are included in the table.

^{2.} No fish were caught at this site during years 4 or 5.

^{3.} Units are wet weight.

Table 14. Arroyo Las Posas – Somis Road (06_SOMIS) Fish Tissue Data Years 1 – 6 1,2

				Lipids			00	C Pestic	ides ³				PCBs ³
Date		Fish		Percent Lipids	Chlordane -alpha	Chlordane -gamma	2,4'- DDD	2,4'- DDE	2,4'- DDT	4,4'- DDD	4,4'- DDE	Toxaphene	Aroclor 1254
				%	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
8/6/08	Arroyo Chub	Composite		2.7	ND	ND	ND	ND	ND	ND	492	ND	ND
9/3/09		Composite #1	29-51mm	6.7	11	DNQ	37	ND	ND	646	1918	ND	34
9/3/09		Composite #1	53-97mm	4.6	DNQ	ND	62	ND	ND	535	1967	2821	36
9/3/09	Arroyo	Composite #2	29-51mm	6.8	9.0	DNQ	55	ND	ND	1158	2203	ND	31
9/3/09	Chub	Composite #2	53-97mm	6.2	12	5.9	28	16	43	128	2313	3054	44
9/3/09		Composite #3	29-51mm	5.7	10	DNQ	30	11	122	157	2124	ND	56
9/3/09		Composite #3	53-97mm	5.3	10	DNQ	12	ND	36	258	2258	2103	32

^{1.} Only constituents with detected values are included in the table.

^{2.} No fish were caught at this site during years 3, 4, 5, or 6.

^{3.} Units are wet weight.

Table 15. Revolon Slough – Wood Road (04_WOOD) Fish Tissue Data Years 1 – 6 1,2

			Lipids				OC P	esticide	s³				PCBs ³
Date	Fis	sh	Percent Lipids	Chlordane -alpha	Chlordane -gamma	2,4'- DDD	2,4'- DDE	2,4'- DDT	4,4'- DDD	4,4'- DDE	4,4'- DDT	Toxaphene	Aroclor 1254
			%	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
8/7/08	Comp. Fillet, no Common skin		3.0	ND	ND	27	ND	14	85	1194	21	349	ND
8/7/08	Carp	Comp. Fillet w/ skin	2.1	5.3	ND	18	7.4	DNQ	40	615	13	259	ND
9/3/09	Carcas		12.1	91	62	129	25	ND	1210	11100	904	25800	28
9/3/09		Fillet w/ Skin #1	2.8	35	21	55	17	ND	262	4210	328	6630	ND
9/3/09	Common	Carcass	9.6	102	60	205	76	ND	1070	9590	367	17000	51
9/3/09	Carp	Fillet w/ Skin #2	3.3	47	31	110	31	ND	371	4790	168	5930	DNQ
9/3/09		Carcass	9.0	117	66	185	64	ND	1100	7750	411	14300	54
9/3/09		Fillet w/ Skin #3	2.7	54	33	77	39	50	378	4000	239	5480	20
9/3/09		Comp. #1	8.7	41	27	133	77	191	878	6320	57	14700	24
9/3/09	Arroyo Chub	Comp. #1	9.0	38	24	82	73	222	689	5630	36	19900	DNQ
9/3/09		Comp. #2	6.9	33	16	88	65	168	568	5580	52	17900	ND
8/25/11	Commo	n carp	2.6	9.3	5.5	15	DNQ	67	ND	819	8.5	206	ND
9/4/12	Commo	n carp	5.6	ND	ND	ND	ND	116	ND	1750	ND	ND	ND
8/27/13	Whole Comp Commo Fathead	osite n carp	6.3	ND	ND	ND	ND	ND	84.3	1984.1	ND	1611.1	ND

^{1.} Only constituents with detected values are included in the table.

^{2.} No fish were caught at this site during years 3.

^{3.} Units are wet weight.

Table 16. Revolon Slough – Wood Road (04_WOOD) Metals Fish Tissue Data Years 1 – 6 1,2

			Lipids	Metals ³			
Date		Fish	Percent Lipids	Total Mercury	Total Selenium		
			%	ng/g	ng/g		
8/7/08	Common Carp	Comp. Fillet, no skin	3.0	DNQ	1.34		
8/7/08		Comp. Fillet w/ skin	2.1	DNQ	2.29		
9/3/09		Carcass #1	12.1	DNQ	1.49		
9/3/09		Fillet w/ Skin #1	2.8	DNQ	1.64		
9/3/09		Carcass #2	9.6	DNQ	1.97		
9/3/09	Common Carp	Fillet w/ Skin #2	3.3	DNQ	2.1		
9/3/09		Carcass #3	9.0	DNQ	1.37		
9/3/09		Fillet w/ Skin #3	2.7	0.02	1.74		
9/3/09		Comp. #1	8.7	0.02	1.56		
9/3/09	Arroyo Chub	Comp. #1	9.0	0.02	1.77		
9/3/09		Comp. #2	6.9	0.02	1.42		
8/25/11	Com	mon carp	2.6	0.0036	2.69		
9/4/12	Com	mon carp	5.6	0.011	1.89		
8/27/13	Com	sh Composite mon carp ad Minnow	6.3	0.013	1.95		

^{1.} Only constituents with detected values are included in the table.

^{2.} No fish were caught at this site during year 3.

^{3.} Units are wet weight.

TOXICITY DATA

The following is a summary of the toxicity results to date for water column and sediment at the freshwater sampling sites. Table 17 displays significant water column mortality test results for six years of CCWTMP events, including both dry and storm (bolded text) events. Significant mortality found in freshwater sediments is shown in Table 18.

Toxicity was frequently identified at the 04_WOOD site during the first two monitoring years in water column samples and in each of the four sediment samples. The stakeholders have chosen to invest resources into source control efforts to address sources potentially contributing to the toxicity issue. This is being accomplished through the implementation of the Agricultural Water Quality Management Plan (AWQMP) developed by the Ventura County Agricultural Irrigated Lands Group (VCAILG) as part of the Conditional Waiver for Irrigated Agricultural Lands (Ag Waiver).

During dry weather water column sampling, toxicity has been identified historically at all sampled sites except 13_BELT. There was one occurrence of dry weather water column toxicity during the sixth year of monitoring. Toxicity has been identified during wet weather monitoring at all sites, except for 10_GATE and 13_BELT. However, no wet weather toxicity occurred during the storm event for sixth year monitoring (Event 42).

Water column TIEs have been initiated as described previously, and outcomes of these efforts have had limited success in identifying the true cause of toxicity. While not identifying the specific constituents causing toxicity, the TIEs have identified:

- Organic compounds are likely contributors to ambient water toxicity.
- Compounds similar to organophosphorus (OP) pesticides are continually being identified as possible contributors to the observed toxicity.

The results of future CCWTMP toxicity testing will continue to assist in the identification of when and where conditions are toxic in the Calleguas Creek watershed, and help the stakeholders better target areas in the watershed that show continual toxicity and focus limited resources to address the problems. It is important to note that instances of observed mortality in water samples have generally been decreasing since the beginning of the CCWTMP. There were nine instances of significant mortality in water column samples during the first year of monitoring, with eight occurrences in the second year, three in the third year, five in the fourth year, two in the fifth year, and one in the sixth year.

Table 17. Water Column Toxicity for All Monitoring Events and Sites

(Significant mortality denoted by "X", bolded events are wet weather events)

CCWMTP	Evente				Site ID			
Year	Events	04_WOOD	9B_ADOLF	03_UNIV	10_GATE	06_SOMIS	13_BELT	07_HITCH
	1	Х						
	2	Х						
Year 1	3	Х	x	X				Х
rear i	4	Х						
	5	Х						Х
	6							
	9							
	12	Х						
Year 2	14	Х		X		X		
I Gai Z	16	Х		X				Х
	17							
	20			Χ				
	22							
	23							
Year 3	24	Х						
l eal 3	25							
	26	Х						Х
	27							
	28					X		
	29		X		X			
Year 4	30	Х						
I Gal 4	31							
	32			X				
	33							
	34							
	35							
Year 5 ¹	36	X ²						
	37			X ³				
	38							
	39	X ²						
	40				4			
Year 6	41		6	6	6	6	5	6
	42							
	43							

 ¹⁰_GATE and 13_BELT are also toxicity investigation monitoring sites. During year 5 these sites were only sampled during event 38.

A TIE was not initiated at this site. TIEs conducted during previous monitoring years identified organic compounds such as
pesticides as the likely cause of the toxicity. TIEs have been suspended while efforts are taken to reduce the source of the
toxicity.

^{3.} A Phase I TIE was conducted for this site. While the TIE did not conclusively identify a source of toxicity, the results were indicative of organic compounds. The corresponding water quality sample detected the OP pesticide chlorpyrifos at a concentration of 0.083 µg/L. This level is above the wasteload allocation for stormwater discharges but below the agricultural discharger's interim load allocation and above the final numeric target.

^{4.} Toxicity testing was not performed at the 10_GATE site for Event 40.

^{5.} Toxicity testing was not performed at the 10_BELT site for Event 41.

Successful toxicity testing for sites with conductivity less than 3000 μS/cm could not be completed for Event 41 due to a decline in the C. dubia laboratory culture. Sites include: 9B_ADOLF, 03_UNIV, 10_GATE, 06_SOMIS, and 07_HITCH.

Table 18. Sediment Toxicity for All CCWTMP Freshwater Monitoring Events and Sites (Significant mortality denoted by "X")

CCWMTP	Fuente		Site ID							
Year	Events	04_WOOD	02_PCH 1	03_UNIV	9A_HOWAR ¹					
Year 1	1	Х								
Year 2	9	X								
Year 3	22	X								
Year 4	28	X	Χ	Χ						
Year 5	34	X	NS	Χ	NS					
Year 6	39	X	NS	X ²	NS					

NS – Not Sampled; sites were not sampled during the corresponding monitoring year.

- 1. 02_PCH and 9A_HOWAR are toxicity investigation monitoring sites.
- A TIE targeted for organics was performed for the 03_UNIV site due to a greater than 50 percent reduction in H. azteca survival.

As per the third year annual monitoring report recommendation, toxicity investigation monitoring was ceased during year five. Therefore, sediment toxicity sampling at 02_PCH and 9A_HOWAR did not take place during the two most recent monitoring years. Water column toxicity sampling did not take place at 10 GATE for Event 40 or 13 BELT for Event 41. There was significant toxicity at the 04 WOOD site and the 03 UNIV site during Event 39 sediment sampling. A TIE was not performed for the 04_WOOD site as there was less than a 50 percent reduction in survival relative to the control. However, sediment porewater and bulk sediment TIEs targeted for organics were performed for the 03_UNIV site. The results of the sediment porewater TIE suggest there are multiple compounds (organics and/or ammonia) contributing to sediment porewater toxicity. The results of the bulk sediment TIE suggest there are multiple compounds contributing to bulk sediment toxicity including non-polar organics and to a lesser extent, metals. However, the bulk sediment TIE results suggest that ammonia is not a cause of bulk sediment toxicity. This may also suggest that ammonia is not a cause of sediment porewater toxicity as the pH of porewater increases as it is removed from the sediment, which increases toxicity (i.e., the increase in pH accounts for the toxicity rather than the ammonia concentration).

Compliance Analysis and Discussion

COMPLIANCE COMPARISON

As outlined in the QAPP, data applicable to compliance targets or allocations is reviewed in this report. The following tables list the applicable compliance measures that are covered by the sixth year of monitoring. For the compliance assessment, two types of assessment procedures were used depending on whether or not the final compliance dates for the TMDL were applicable during the monitoring year.

For TMDLs for which no final allocations or targets are currently effective (OC Pesticides, Metals, and Salts TMDLs), the following compliance comparisons were conducted:

1. Applicable receiving water data at the compliance locations (base of each subwatershed) were compared to the interim load and waste load allocations.

- 2. If an exceedance of an interim load and/or waste load allocation was observed, the contributing land use data were assessed to evaluate the potential cause of the exceedance.
- 3. POTW effluent data were compared to the relevant interim waste load allocations.

For the Nitrogen TMDL the following compliance comparisons were conducted:

- 1. For POTWs, the final waste load allocations are currently effective. As a result, effluent monitoring results were compared to the final allocations for the analysis.
- 2. For agricultural dischargers and other non-point sources, load allocations are currently effective. Since agricultural dischargers are the only entities with allocations other than POTWs, compliance is assessed by comparing receiving water results against TMDL numeric targets.

For the Toxicity TMDL, the following compliance comparisons were conducted:

- 1. For POTWs, the final waste load allocations are currently effective. As a result, effluent monitoring results were compared to the final allocations for the analysis.
- 2. For MS4 dischargers, the final waste load allocations are currently effective. As a result, applicable receiving water data at the compliance locations (base of each subwatershed) were compared to the final waste load allocations. If an exceedance of the final waste load allocation was found, the contributing urban land use data were assessed to evaluate whether the MS4 was potentially causing the exceedance.
- 3. For agricultural dischargers, the final load allocations are not yet effective. As a result, applicable receiving water data at the compliance locations (base of each subwatershed) were compared to the interim load allocations. If an exceedance of an interim load allocation was observed, the contributing agricultural land use data were assessed to evaluate whether agricultural discharges were potentially causing the exceedance.
- 4. In cases where the applicable interim load allocations or final waste load allocations have different values for acute (1-hour) toxicity and chronic (4-day) toxicity, the acute toxicity allocations were used for assessing wet weather data and the chronic toxicity allocations were used for assessing dry-weather data.

The following tables compare the applicable allocations based on the compliance procedure outlined above for each of the TMDLs. Some constituents sampled under the CCWTMP do not have applicable allocations and/or targets and are not included in the compliance analysis.

COMPLIANCE AT RECEIVING WATER SITES

Table 19. OC Pesticides, PCBs, & Siltation in Sediment

Site & Constituent	Units	Interim WLA & LA ¹	Event 39 Aug-2013
Calleguas Creek -	- Hwy 1 Bridge	e (02_PCH)	
Total Chlordane 2	ng/g dw	17	ND
4,4'-DDD	ng/g dw	66	ND
4,4'-DDE	ng/g dw	470	7.5
4,4'-DDT	ng/g dw	110	ND
Dieldrin	ng/g dw	3	ND
PCBs ³	ng/g dw	3800	ND
Toxaphene	ng/g dw	260	ND
Revolon Slough -	- Wood Road (04_WOOD)	
Total Chlordane 2	ng/g dw	48	ND
4,4'-DDD	ng/g dw	400	ND
4,4'-DDE	ng/g dw	1600	39.9
4,4'-DDT	ng/g dw	690	DNQ
Dieldrin	ng/g dw	5.7	ND
PCBs ³	ng/g dw	7600	ND
Toxaphene	ng/g dw	790	69.3
Calleguas Creek -	- University Di	rive CSUCI (03_UN	IIV)
Total Chlordane 2	ng/g dw	17	ND
4,4'-DDD	ng/g dw	66	ND
4,4'-DDE	ng/g dw	470	DNQ
4,4'-DDT	ng/g dw	110	ND
Dieldrin	ng/g dw	3	ND
PCBs ³	ng/g dw	3800	ND
Toxaphene	ng/g dw	260	DNQ
Conejo Creek – A	dolfo Road (9L	B_ADOLF)	
Total Chlordane ²	ng/g dw	3.4	ND
4,4'-DDD	ng/g dw	5.3	ND
4,4'-DDE	ng/g dw	20	DNQ
4,4'-DDT	ng/g dw	2	ND
Dieldrin	ng/g dw	3	ND
PCBs ³	ng/g dw	3800	ND
Toxaphene	ng/g dw	260	ND

Table 20. OC Pesticides, PCBs, & Siltation in Sediment (continued)

Site & Constituent	Units	Interim WLA & LA ¹	Event 39 Aug-2013
Arroyo Las Posas -	- Somis Road	d (06_SOMIS)	
Total Chlordane 2	ng/g dw	3.3	ND
4,4'-DDD	ng/g dw	290	DNQ
4,4'-DDE	ng/g dw	950	10.4
4,4'-DDT	ng/g dw	670	ND
Dieldrin	ng/g dw	1.1	ND
PCBs ³	ng/g dw	25,700	ND
Toxaphene	ng/g dw	230	ND
Arroyo Simi – Hitch	n Boulevard (07_HITCH)	
Total Chlordane 2	ng/g dw	3.3	ND
4,4'-DDD	ng/g dw	14	ND
4,4'-DDE	ng/g dw	170	DNQ
4,4'-DDT	ng/g dw	25	ND
Dieldrin	ng/g dw	1.1	ND
PCBs ³	ng/g dw	25,700	ND
Toxaphene	ng/g dw	230	ND

ND=not detected; DNQ=detected not quantifiable

Interim waste load allocation for stormwater permittees and interim load allocations for agricultural dischargers; effective until March 24, 2026 (R4-2005-010).

^{2.} Total chlordane is the sum of alpha and gamma-chlordane.

^{3.} PCBs concentrations are the sum of the seven aroclors identified in CTR (1016, 1221, 1232, 1242, 1248, 1254, and 1260).

Table 21. Nitrogen Compounds in Water

			Event 39	Event 40	Event 41	Event 42	Event 43
Site &			Dry	Dry	Dry	Wet	Dry
Constituent	Units	Target 1	Aug-2013	Nov-2013	Feb-2014	Feb-2014	May-2014
Mugu Lagoon	– Ronal	ld Reagan	Bridge (01_R	R_BR)			
Ammonia-N	mg/L	8.1 ²	0.35	DNQ	0.11	0.33	0.29
Nitrate-N	mg/L	10	0.21	0.5	21.19	6.6	28.08
Nitrite-N	mg/L	1	0.01	ND	0.06	0.07	0.3
Nitrate-N + Nitrite-N	mg/L	10	0.22	0.5	21.25	6.67	28.38
Revolon Sloug	gh – Wo	od Road (0	14_WOOD)				
Ammonia-N	mg/L	5.7 ²	0.31	0.17	0.14	0.14	0.08
Nitrate-N	mg/L	10	38.9	36.31	33.13	11.47	39.81
Nitrite-N	mg/L	1	0.34	0.1	0.19	0.1	0.85
Nitrate-N + Nitrite-N	mg/L	10	39.24	36.41	33.32	11.57	40.66
Beardsley Wa	sh – Cei	ntral Avenı	ie (05_CENTI	R)			
Ammonia-N	mg/L	5.7 ²	DNQ	0.21	0.06	0.15	0.14
Nitrate-N	mg/L	10	34.75	28.16	28.88	12.76	34.37
Nitrite-N	mg/L	1	0.14	0.07	0.08	0.13	0.31
Nitrate-N + Nitrite-N	mg/L	10	34.89	28.23	28.96	12.89	34.68
Calleguas Cre	ek – Hw		(02_PCH)				
Ammonia-N	mg/L	5.5 ²	0.18	0.1	0.17	NR	0.07
Nitrate-N	mg/L	10	14.53	14.32	19.45	NR	25.34
Nitrite-N	mg/L	1	ND	0.08	ND	NR	ND
Nitrate-N + Nitrite-N	mg/L	10	14.53	14.4	19.45	NR	25.34
Calleguas Cre	eek – Un		ive CSUCI (03	B_UNIV)			
Ammonia-N	mg/L	8.4 ²	0.06	0.16	0.1	0.22	DNQ
Nitrate-N	mg/L	10	5.06	5.85	7.16	3.03	5.46
Nitrite-N	mg/L	1	ND	ND	0.04J	0.02J	ND
Nitrate-N + Nitrite-N	mg/L	10	5.06	5.85	7.2	3.05	5.46
Conejo Creek	- Howa	rd Road Br	ridge (9A_HO	WAR)			
Ammonia-N	mg/L	9.5 ²	0.76	0.59	0.93	NR	1.63
Nitrate-N	mg/L	10	4.83	6.58	8.52	NR	5.13
Nitrite-N	mg/L	1	0.07	ND	ND	NR	ND
Nitrate-N + Nitrite-N	mg/L	10	4.9	6.58	8.52	NR	5.13

Table 22. Nitrogen Compounds in Water (continued)

			Event 39	Event 40	Event 41	Event 42	Event 43
Site &			Dry	Dry	Dry	Wet	Dry
Constituent	Units	Target 1	Aug-2013	Nov-2013	Feb-2014	Feb-2014	May-2014
Conejo Creek	– Adolfe		B_ADOLF)				
Ammonia-N	mg/L	9.5 ²	DNQ	0.06	DNQ	0.29	ND
Nitrate-N	mg/L	10	4.56	4.52	5.24	1.35	3.91
Nitrite-N	mg/L	1	ND	ND	ND	0.02J	ND
Nitrate-N + Nitrite-N	mg/L	10	4.56	4.52	5.24	1.37	3.91
Conejo Creek	– Hill Ca	anyon Belo	ow N Fork (10	D_GATE)			
Ammonia-N	mg/L	8.4 ²	0.52	0.43	0.28	0.17	0.28
Nitrate-N	mg/L	10	5.01	4.56	4.67	1.52	5.27
Nitrite-N	mg/L	1	0.19	0.07	0.1	ND	0.11
Nitrate-N + Nitrite-N	mg/L	10	5.2	4.63	4.77	1.52	5.38
Conejo Creek	– North	Fork Abov	ve Hill Canyo	n (12_PARK)			
Ammonia-N	mg/L	3.2 ²	ND	0.05	DNQ	NR	DNQ
Nitrate-N	mg/L	10	0.04J	0.56	0.39	NR	0.09
Nitrite-N	mg/L	1	ND	ND	ND	NR	ND
Nitrate-N + Nitrite-N	mg/L	10	0.04J	0.56	0.39	NR	0.09
Conejo Creek	– S Forl	k Behind E	Belt Press Bu	ild (13_BELT)			
Ammonia-N	mg/L	5.1 ²	DNQ	0.07	ND	NR	ND
Nitrate-N	mg/L	10	0.46	0.99	0.62	NR	0.26
Nitrite-N	mg/L	1	ND	ND	ND	NR	ND
Nitrate-N + Nitrite-N	mg/L	10	0.46	0.99	0.62	NR	0.26
Arroyo Las Po	osas – S		d (06_SOMIS)				
Ammonia-N	mg/L	8.1 ²	0.07	0.06	ND	0.39	NS
Nitrate-N	mg/L	10	12.35	10.27	10.24	3.57	NS
Nitrite-N	mg/L	1	ND	ND	ND	0.05	NS
Nitrate-N + Nitrite-N	mg/L	10	12.35	10.27	10.24	3.62	NS
Arroyo Simi –	Hitch B	oulevard (07_HITCH)				
Ammonia-N	mg/L	4.7 ²	0.07	0.09	ND	0.46	ND
Nitrate-N	mg/L	10	7.4	7.41	9.23	1.29	11.11
Nitrite-N	mg/L	1	0.05	ND	0.03J	0.02J	ND
Nitrate-N + Nitrite-N	mg/L	10	7.45	7.41	9.26	1.31	11.11

Table 23. Nitrogen Compounds in Water (continued)

			Event 39	Event 40	Event 41	Event 42	Event 43
Site &			Dry	Dry	Dry	Wet	Dry
Constituent	Units	Target 1	Aug-2013	Nov-2013	Feb-2014	Feb-2014	May-2014
Arroyo Simi -	- Madera	a Avenue (07_MADER)				
Ammonia-N	mg/L	4.7 ²	0.05	DNQ	0.23	0.4	0.11
Nitrate-N	mg/L	10	4.34	4.58	4.38	0.89	3.82
Nitrite-N	mg/L	1	0.11	ND	0.04J	0.03J	0.07
Nitrate-N + Nitrite-N	mg/L	10	4.45	4.58	4.42	0.92	3.89

NS=no sample, dry; NR=not required; ND=not detected; DNQ=detected not quantifiable; J=estimated DNQ values for Nitrite-N, shown for the purpose of calculating the Nitrite-N + Nitrate-N sum and comparing it against the Nitrate-N + Nitrite-N target.

Results in **bold red type** exceed numeric TMDL target.

^{1.} Load allocations for Nitrate-N + Nitrite-N are in effect for agricultural and other non-point sources. To evaluate compliance, monitoring results at receiving water compliance sites were compared against TMDL numeric targets (R4-2008-009).

^{2.} One-hour average.

Table 24. Toxicity, Diazinon, and Chlorpyrifos in Water

				Event 39	Event 40	Event 41	Event 43			Event 42
Site &		Dry	Dry	Dry	Dry	Dry	Dry	Wet	Wet	Wet
Constituent	Units	WLA 1	Interim LA ²	Aug-2013	Nov-2013	Feb-2014	May-2014	WLA 1	Interim LA ²	Feb-2014
Mugu Lagoon	– Ronald	d Reagan	Bridge (01_F	RR_BR)						
Chlorpyrifos	μg/L	0.014	0.81	ND	ND	ND	ND	0.014	2.57	0.0924
Diazinon	μg/L	0.1	0.138	ND	ND	ND	ND	0.1	0.278	0.0095
Revolon Sloug	gh – Woo	od Road ((04_WOOD)							
Chlorpyrifos	μg/L	0.014	0.81	ND	0.0026	0.0117	ND	0.014	2.57	0.1691
Diazinon	μg/L	0.1	0.138	ND	ND	ND	ND	0.1	0.278	0.0232
Calleguas Cre	ek – Uni	versity D	rive CSUCI (0	3_UNIV)						
Chlorpyrifos	μg/L	0.014	0.81	ND	ND	0.0054	0.0046	0.014	2.57	0.0314
Diazinon	μg/L	0.1	0.138	ND	ND	ND	ND	0.1	0.278	0.0094
Conejo Creek	– Adolfo	Road (9	B_ADOLF)							
Chlorpyrifos	μg/L	0.014	0.81	ND	ND	ND	ND	0.014	2.57	ND
Diazinon	μg/L	0.1	0.138	ND	ND	ND	ND	0.1	0.278	ND
Arroyo Las Po	sas – So	omis Roa	d (06_SOMIS)							
Chlorpyrifos	μg/L	0.014	0.81	ND	ND	0.0027	NS	0.014	2.57	0.1325
Diazinon	μg/L	0.1	0.138	ND	ND	ND	NS	0.1	0.278	ND
Arroyo Simi –	Hitch Bo	oulevard	(07_HITCH)					•	1	
Chlorpyrifos	μg/L	0.014	0.81	ND	ND	0.008	0.0027	0.014	2.57	ND
Diazinon	μg/L	0.1	0.138	ND	ND	ND	ND	0.1	0.278	0.0158

ND=not detected; NS=no sample collected due to site being dry.

Results in **bold purple type** exceed the final WLA, but not the interim LA.

^{1.} Final Dry and Wet Weather WLAs for Stormwater Dischargers effective as of March 24, 2008 (R4-2005-009).

^{2.} Interim Dry and Wet Weather Load Allocations for Irrigated Agriculture; effective until March 24, 2016 (R4-2005-009).

Table 25. Metals and Selenium in Water

Constituent	Units	Dry Interim WLA ¹	Dry Interim LA ²	Event 39 Dry Aug-2013	Event 40 Dry Nov-2013	Event 41 Dry Feb-2014	Event 43 Dry May-2014	Wet Interim WLA ¹	Wet Interim LA ²	Event 42 Wet Feb-2014	Annual Average ³
Revolon Slough	– Wood	d Road (0	4_WOOD)								
Total Copper	μg/L	19	19	4.68	3.80	5.69	2.78	204	1390	70.28	
Total Nickel	μg/L	13	42	6.7	8.09	6.93	7.21	74 ⁴	74 ⁴	47.32	
Total Selenium	μg/L	13	6	17.72	17.77	20.98	20.98	290 ⁴	290 ⁴	4.31	
Total Mercury 5	lbs/yr	1.7	2					4	4.8		0.012
Calleguas Creel	k – Univ	ersity Driv	re CSUCI	(03_UNIV)							
Total Copper	μg/L	19	19	2.28	2.2	2.78	2.55	204	1390	72.31	
Total Nickel	μg/L	13	42	6.40	5.33	5.46	5.97	74 ⁴	74 ⁴	59.79	
Total Selenium	μg/L			0.65	0.49	0.57	0.62			1.52	
Total Mercury 5	lbs/yr	3.3	3.9					10.5	12.6		0.035

- 1. Interim Dry Weather WLAs for Stormwater Dischargers; effective until March 2022 (R4-2006-0012)
- 2. Interim Dry Weather LAs for Irrigated Agriculture; effective until March 2022 (R4-2006-0012)
- 3. Mercury allocation is assessed as an annual load in suspended sediment. The water column mercury concentrations were used in calculating the loads, conservatively assuming that all mercury is on suspended sediment rather than being dissolved. The loads at each site are based on estimated annual concentrations (average of all monitored events at each site) and total annual flow calculated from preliminary streamflow data received from real time data loggers.
- 4. No wet weather exceedances of these constituents were observed in the TMDL analysis so no interim limits were assigned for the TMDL. For comparison purposes the wet weather targets are included in the table.
- 5. Interim WLA and LAs are expressed as annual loads. Total annual flow for 07/01/12 to 06/31/13 into Mugu Lagoon from Calleguas Creek and Revolon Slough is calculated as 4,926 Mgal/yr. As such, the interim WLA and LA shown correspond to the flow range of 0 to 15,000 to Mgal/yr, per R4-2006-0012.

Results in **bold red type** exceed applicable interim WLA and LA.

Table 26. Monthly Mean Salts Concentrations

	Units		erim mit	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13	Jan-14	Feb-14	Mar-14	Apr-14	May-14	Jun-14
		WLA	LA		J	•							•	•	
Revolon Slough	– Wood	Road (0	4_W00	D)											
Total Dissolved Solids	mg/L	1720	3995	3689	3713	3858	2940	3368	3392	3365	3525	3628	3525	3488	3767
Chloride	mg/L	230	230	187	188	195	151	171	173	171	179	184	179	177	191
Sulfate	mg/L	1289	1962	1850	1862	1935	1475	1690	1702	1688	1768	1820	1768	1750	1889
Boron	mg/L	1.3	1.8	1.89	1.91	1.98	1.52	1.74	1.75	1.73	1.81	1.86	1.81	1.79	1.93
Calleguas Creek	– Unive	rsity Dri	ve CSU	CI (03_UNI	V)										
Total Dissolved Solids	mg/L	1720	3995	1021	1059	1085	1060	1038	1049	1030	1001	962	996	1007	1007
Chloride	mg/L	230	230	199	207	213	207	202	205	201	195	186	194	196	196
Sulfate	mg/L	1289	1962	248	257	264	258	252	255	251	243	234	242	245	245
Conejo Creek – I	loward I	Road Br	idge (9A	_HOWAR)										
Total Dissolved Solids	mg/L	1720	3995	942	1009	1034	1000	977	992	980	934	897	928	936	934
Chloride	mg/L	230	230	189	203	209	201	196	200	197	187	179	186	188	187
Sulfate	mg/L	1289	1962	234	251	258	249	243	247	244	232	223	231	233	232
Conejo Creek – L	Baron Br	others l	Vursery	(9B_BARC	ON)										
Total Dissolved Solids	mg/L	1720	3995	651	651	643	657	653	664	669	679	728	726	707	699
Chloride	mg/L	230	230	145	146	143	147	146	149	150	152	165	164	159	157
Sulfate	mg/L	1289	1962	138	138	136	139	138	140	141	144	153	153	149	148
Arroyo Simi – Tie	erra Reja	da Roa	d (07_TI	ERRA)											
Total Dissolved Solids	mg/L	1720	3995	1090	1091	1082	1094	1101	1112	1107	1106	1171	1173	1170	1154
Chloride	mg/L	230	230	156	156	154	156	157	159	158	158	167	168	167	165
Sulfate	mg/L	1289	1962	407	407	404	409	411	416	414	413	438	439	438	432
Boron	mg/L	1.3	1.8	0.67	0.67	0.66	0.67	0.68	0.68	0.68	0.68	0.72	0.72	0.72	0.71

Notes:

Results in **bold red type** exceed both the applicable interim WLA and LA. Results in **bold purple type** exceed the interim WLA, but not the interim LA.

a. Monthly dry weather mean salt concentrations were generated using mean daily salt concentrations (from 5-min data) for days that met the definition of dry weather in the Salts TMDL (i.e., discharge < 86th percentile flow and no measureable rain in preceding 24 hrs). The 86th percentile of mean daily discharge at 03_Univ (generated using 5-min discharge data for the period July 1, 2012-June 30, 2013) was used as the flow-related threshold for distinguishing wet and dry days for all five compliance sites. Daily precipitation records for 23 gages in the CCW watershed (accessed via the VCWPD Hydrologic Data Server) were used to determine days with "measureable precipitation". Days were considered as having measureable precipitation if two or more rain gages in the watershed received 0.1 inch or more of precipitation.

POTW COMPLIANCE

Table 27. Nitrogen Compounds - POTWs

POTW & Constituent	Units	Final WLA ¹	Event 39 Dry Aug-2013	Event 40 Dry Nov-2013	Event 41 Dry Feb-2014	Event 43 Dry May-2014
Camarillo Water Reci	lamation	Plant (9AD_	CAMA)			
Ammonia-N	mg/L	3.5 ² , 7.8 ³	1.03	1.35	1.29	1.26
Nitrate-N	mg/L	9	4.97	6.25	7.5	7.0
Nitrite-N	mg/L	0.9	ND	ND	0.1	0.1
Nitrate-N + Nitrite-N	mg/L	9	4.97	6.25	7.6	7.1
Hill Canyon Wastewa	ter Trea	tment Plant (10D_HILL)			
Ammonia-N	mg/L	3.1 ² , 5.6 ³	1.6	1.6	1.2	1.7
Nitrate-N	mg/L	9	7.5	6.5	7.5	7.2
Nitrite-N	mg/L	0.9	ND	ND	ND	ND
Nitrate-N + Nitrite-N	mg/L	9	7.5	6.5	7.5	7.2
Simi Valley Water Qu	ality Co	ntrol Plant (0)	7D_SIMI)			
Ammonia-N	mg/L	2.4 ² , 3.3 ³	1.2	1.2	1.5	1.0
Nitrate-N	mg/L	9	7.3	6.1	6.0	6.0
Nitrite-N	mg/L	0.9	0.014	0.013	0.019	0.06
Nitrate-N + Nitrite-N	mg/L	9	7.31	6.11	6.02	6.06

ND=constituent not detected at the MDL.

^{1.} The effective date for these WLAs was July 16, 2007 (R4-2008-009)

^{2.} WLAs as Average Monthly Effluent Limit

^{3.} WLAs as Maximum Daily Effluent Limit

Table 28. OC Pesticides, PCBs, and Siltation - POTWs

POTW & Constituent	Units	Interim WLA ¹	Event 39 Dry Aug-2013	Event 40 Dry Nov-2013	Event 41 Dry Feb-2014	Event 43 Dry May-2014
Camarillo Water Red	lamation	Plant (9AD_CA	MA)			
Total Chlordane ²	ng/L	100	ND	ND	ND	ND
4,4'-DDD	ng/L	6	ND	ND	ND	ND
4,4'-DDE	ng/L	188	ND	ND	ND	ND
4,4'-DDT	ng/L	10	ND	ND	ND	ND
Dieldrin	ng/L	10	ND	ND	ND	ND
PCBs ³	ng/L	31	ND	ND	ND	ND
Toxaphene	ng/L	500	ND	ND	ND	ND
Hill Canyon Wastew	ater Trea	tment Plant (10	D_HILL)			
Total Chlordane ²	ng/L	1.2	ND	ND	ND	ND
4,4'-DDD	ng/L	20	ND	ND	ND	ND
4,4'-DDE	ng/L	260	ND	ND	ND	ND
4,4'-DDT	ng/L	10	ND	ND	ND	ND
Dieldrin	ng/L	10	ND	ND	ND	ND
PCBs ³	ng/L	500	ND	ND	ND	ND
Toxaphene	ng/L	500	ND	ND	ND	ND
Simi Valley Water Q	uality Co	ntrol Plant (07D	_SIMI)			
Total Chlordane ²	ng/L	100	ND	ND	ND	ND
4,4'-DDD	ng/L	50	ND	ND	ND	ND
4,4'-DDE	ng/L	1.2	ND	ND	ND	ND
4,4'-DDT	ng/L	10	ND	ND	ND	ND
Dieldrin	ng/L	10	ND	ND	ND	ND
PCBs ³	ng/L	500	ND	ND	ND	ND
Toxaphene	ng/L	500	ND	ND	ND	ND

ND=constituent not detected at the MDL.

^{1.} Interim daily WLAs are effective until March 14, 2026 (R4-2005-010).

^{2.} Total chlordane is the sum of alpha and gamma-chlordane.

^{3.} PCBs concentrations are the sum of the seven aroclors identified in CTR (1016, 1221, 1232, 1242, 1248, 1254, and 1260).

Table 29. Toxicity, Chlorpyrifos, and Diazinon - POTWs

DOTW 9		Final	Event 39 Dry	Event 40 Dry	Event 41 Dry	Event 43 Dry
POTW & Constituent	Units	Final WLA ¹	Aug-2013	_	_	•
Camarillo Water Red	lamation	Plant (9AD_	CAMA)			
Chlorpyrifos	μg/L	0.0133	ND	ND	ND	ND
Diazinon	μg/L	0.1	ND	ND	ND	ND
Hill Canyon Wastew	ater Treat	ment Plant (10D_HILL)			
Chlorpyrifos	μg/L	0.014	ND	ND	ND	ND
Diazinon	μg/L	0.1	ND	ND	ND	ND
Simi Valley Water Qu	uality Cor	ntrol Plant (0	7D_SIMI)			
Chlorpyrifos	μg/L	0.014	ND	ND	ND	ND
Diazinon	μg/L	0.1	ND	ND	ND	ND

ND=constituent not detected at MDL.

Table 30. Metals and Selenium - POTWs

POTW &		Daily Max	Monthly		Event 39 Dry	Event 40 Dry	Event 41 Dry	Event 43 Dry
Constituent	Units	WLA	Avg WLA	WLA	Aug-2013	Nov-2013	Feb-2014	May-2014
Camarillo Wate	er Reclamati	on Plant (9.	AD_CAMA))				
Total Copper	μg/L	57.0 ¹	20.0 ¹		3.5	3.8	4.0	3.9
Total Nickel	μg/L	16.0 ¹	6.2 ¹		3.39	3.34	2.81	2.8
Total Mercury ³	lbs/month 4			0.03 1	0.0002	0.0001	0.0003	0.0001
Hill Canyon Wa	stewater Tr	eatment Pla	ant (10D_H	ILL)				
Total Copper	μg/L	20.0 ¹	16.0 ¹		6.3	4.8	4.0	2.9
Total Nickel	μg/L	8.3 ¹	6.4 ¹		2.2	2.1	3.5	2.0
Total Mercury ³	lbs/month 4			0.23 1	0.0044	0.0043	0.0041	0.0045
Simi Valley Wa	ter Quality (Control Plai	nt (07D_SIN	(II)				
Total Copper	μg/L	31.0 ²	30.5 ²		6.1	5.1	4.2	5.6
Total Nickel	μg/L	960 ²	169 ²		2.2	1.6	1.7	1.5
Total Mercury ³	lbs/month 4			0.18 ¹	0.0005	0.0032	0.0025	0.0042

^{1.} Interim WLA; effective until March 26, 2017 (R4-2006-012)

^{1.} The effective date for these WLAs was March 16, 2008 (R4-2005-009).

^{2.} Final WLA; effective date was March 26, 2007 (R4-2006-012)

^{3.} For total mercury concentrations reported as not detected (ND); one half of the method detection limit was used to calculate the monthly loads

^{4.} During load calculation, the average monthly flow for each POTW was multiplied by the number of days in the month corresponding to when the sample was collected to get a total monthly flow. The total monthly flow was multiplied by the concentration of total mercury to yield the monthly total mercury load in pounds.

Table 31. Salts - POTWs

POTW & Constituent	Units	Monthly Avg Interim WLA	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13	Jan-14	Feb-14	Mar-14	Apr-14	May-14	Jun-14
Camarillo Water Re	eclamat	ion Plant (9Al	D_CAM	4) ¹										
Boron	mg/L	N/A	0.6	0.53	0.53	0.55	0.53	0.53	0.48	0.64	0.5	0.55	0.58	0.48
Chloride	mg/L	216	241	240	247	240	243	239	231	259	227	240	225	224
Sulfate	mg/L	283	351	326	292	348	326	295	253	320	330	327	254	212
Total Dissolved Solids	mg/L	1012	1170	1124	1010	974	1152	1080	1034	1036	930	1150	1084	1146
Hill Canyon Waster	water T	reatment Plan	t (10D_	HILL)										
Boron	mg/L	N/A	0.5	0.4	0.4	0.5	0.4	0.5	0.4	0.4	0.5	0.4	0.4	0.5
Chloride	mg/L	189	138	137	134	136	138	173	147	146	153	156	149	149
Sulfate	mg/L	N/A	80	86	87	88	85	82	84	85	99	130	123	116
Total Dissolved Solids	mg/L	N/A	530	543	535	540	546	555	519	546	578	627	616	610
Simi Valley Water (Quality	Control Plant	(07D_S	імі)										
Boron	mg/L	N/A	0.45	0.5	0.51	0.46	0.49	0.47	0.46	0.45	0.47	0.46	0.46	0.46
Chloride	mg/L	183	149	149	144	132	129	138	136	131	137	135	136	136
Sulfate	mg/L	298	161	167	159	157	165	169	162	177	236	238	210	207
Total Dissolved Solids	mg/L	955	658	675	657	652	654	671	653	671	665	759	681	699

N/A: "The 95th percentile concentration is below the Basin Plan objective so interim limits are not necessary."

Results in **bold red type** exceed applicable interim WLA.

^{1.} Due to water conservation and alterations in the composition of the water supply available in the POTW service area, effluent salt concentrations have increased since the adoption of the TMDL. The increased salts concentrations are being addressed through a Time Schedule Order that provides for higher TDS and sulfate interim limits and a stay of interim limits for chloride (SWRCB WQO 2003-0019).

COMPLIANCE COMPARISON DISCUSSION

OC Pesticides, Toxicity, Metals, Nutrients, and Salts

The compliance analysis shown in Table 19 through Table 31 above demonstrates that for the most part, the CCW is in compliance with the applicable interim or final WLAs and LAs currently in effect for the Nutrients, OC Pesticides, Toxicity, Salts, and Metals TMDLs. The following observations summarize the compliance status with these load allocations:

- No exceedances of the interim WLAs or LAs for OC Pesticides or PCBs were observed at any location in the watershed.
- Exceedances of numeric targets for Nitrate-N and Nitrate-N + Nitrite-N were observed in Mugu Lagoon, Revolon Slough, Beardsley Wash, Calleguas Creek, Arroyo Las Posas, and Arroyo Simi. Most of the exceedances occurred during dry events. No exceedances of final nutrient WLAs were measured at any POTW compliance site.
- Three exceedances of the final MS4 WLA, but not the interim LA, for chlorpyrifos were measured at receiving water sites during the storm event in 2014. There were no exceedances of the diazinon WLA or LA. No exceedances of the final WLAs for chlorpyrifos or diazinon were recorded at any POTW.
- Exceedances of both the interim LA and final MS4 WLA for total selenium were measured at the 04_WOOD monitoring station in Revolon Slough during the four dry weather sampling events.
- Although toxicity was observed at some locations in the watershed, TIEs were initiated for all samples meeting the requirements in the QAPP. As a result, the Stakeholders are in compliance with the toxicity WLAs and LAs per the requirements of the TMDL.
- In general, receiving water sites were in compliance with interim LAs and MS4 WLAs established by the Salts TMDL; the only exception being exceedances in total dissolved solids, sulfate, and boron measured at 04_WOOD in the Revolon Slough watershed. POTWs are in compliance with interim salts WLAs, with the exception of Camarillo Water Reclamation Plant (WRP), which experienced exceedances of chloride, sulfate, and TDS. The exceedances of interim salts WLAs for the Camarillo WRP have resulted from increased influent salt concentrations due to water conservation and a shift in the composition of the water supplied within the service area. Since the process for addressing salts is a watershed effort involving significant capital investments, the Camarillo WRP has received a time schedule order to adjust the interim limits for TDS and sulfate. During the period of this annual report, application of interim limits for chlorine was stayed by State Board Order 2003-019. As a result, the interim limits in the TMDL are not the currently applicable interim limits for the Camarillo WRP discharge.

Nutrients

Exceedances of numeric targets for Nitrate-N and Nitrate-N + Nitrite-N were observed at sites in Mugu Lagoon, Revolon Slough, Beardsley Wash, Arroyo Las Posas, and Calleguas Creek. Nitrate-N exceedances are summarized in Table 32 below. The table focuses on Nitrate-N

results since Nitrate-N + Nitrite-N exceedances were caused by high Nitrate-N values. Nitrite-N was below the 1 mg/L target at all sites and events.

Table 32. Exceedances of Nitrate-N Numeric TMDL Target of 10 mg/L

Nitrogen TMDL Compliance Sites	Event 39 Aug-2013 Dry	Event 40 Nov-2013 Dry	Event 41 Feb-2014 Dry	Event 43 May-2014 Dry	Event 42 Feb-2014 Wet
01_RR_BR	No	No	Yes	Yes	No
04_WOOD	Yes	Yes	Yes	Yes	Yes
05_CENTR	Yes	Yes	Yes	Yes	Yes
02_PCH	Yes	Yes	Yes	Yes	NR
03_UNIV	No	No	No	No	No
9A_HOWAR	No	No	No	No	NR
9B_ADOLF	No	No	No	No	No
10_GATE	No	No	No	No	No
12_PARK	No	No	No	No	NR
13_BELT	No	No	No	No	NR
06_SOMIS	Yes	Yes	Yes	NS	No
07_HITCH	No	No	No	Yes	No
07_MADER	No	No	No	No	No

NR=not required

No signifies that monitoring results were below the Nitrate-N target during the monitoring event.

Yes signifies that monitoring results were above the Nitrate-N target during the monitoring event.

Nitrogen exceedances occurred primarily in areas of the watershed with agricultural inputs. Reaches downstream of POTW discharges are generally in compliance with the TMDL requirements and urban discharges were determined to be negligible during the TMDL analysis and therefore do not have TMDL allocations. The final nitrogen LAs for agriculture became effective in July 2010. The exceedances of the nitrogen LAs since that time have triggered the inclusion of nitrogen in the AWQMP required under the Ag Waiver that is currently being implemented in the CCW. Agricultural education courses have included various classes focused on nitrogen management; AWQMP implementation will continue to target nitrogen and include BMPs to address these exceedances. Compliance with the load allocations is determined through implementation of the AWQMP.

Chlorpyrifos

Further examination of the chlorpyrifos exceedances at receiving water sites was needed to assess whether urban dischargers caused the exceedance of the receiving water allocations. The WLAs for urban dischargers are assessed in the receiving water, while agricultural dischargers are not yet required to be in compliance with the chlorpyrifos final load allocations. Monitoring data at urban land use sites from each subwatershed for which an exceedance was observed was compared to the WLA to determine if MS4 discharges exceeded the allocation during the

monitoring event where elevated receiving water concentrations were observed.¹ If the urban land use data were below the WLA, the MS4 dischargers were considered to be in compliance with the WLAs. If the urban land use data were above the WLA, the MS4 could be contributing to the exceedance in the receiving water.

As shown in Table 33, there were three exceedances of chlorpyrifos targets at the receiving water sites. In all cases, urban land use data for the same event was less than the MS4 WLA for chlorpyrifos. Additionally, for the majority of the events shown in Table 33, chlorpyrifos was not detected at the urban land use sites indicating that it is unlikely MS4 discharges were the cause of the observed exceedances.

Table 33. Compliance and Land Use Sites Comparison to Determine MS4 Chlorpyrifos WLA Compliance

Sites Exceeding WLAs	Constituent	Event 39 Aug-2013 Dry	Event 40 Nov-2013 Dry	Event 41 Feb-2014 Dry	Event 42 Feb-2014 Wet	Event 43 May-2014 Dry
01_RR_BR	Chlorpyrifos				NA ¹	
04_WOOD	Chlorpyrifos				No	
06_SOMIS	Chlorpyrifos				NA ¹	

No= none of the MS4 land use site for the subwatershed exceeded the WLA during the monitoring event.

Blank cells indicate that a WLA exceedance did not occur at the compliance monitoring site during a particular event.

Selenium

Selenium concentrations in Revolon Slough at 04_WOOD exceeded the urban dischargers interim MS4 WLA and the agricultural dischargers interim LA during all four dry weather monitoring events. A summary of monitoring results for total selenium at sites in the Revolon Slough subwatershed is shown in Table 34 below. For discussion purposes both dry weather and wet weather monitoring results are included in the table.

Table 34. Selenium Monitoring Data (ug/L) in the Revolon Slough Subwatershed

			Dry	y Weather	Events &	Dates		Wet We Events 8	
Site ID	Use	Inter WLA ¹	im LA ¹	39 Aug-13	40 Nov-13	41 Feb-14	43 May-14	Target ²	42 Feb-14
04_WOOD	RW	13	6	17.72	17.77	20.98	20.98	290	4.31
04D_WOOD	Ag		6	NS	2.46	NS	NS	290	4.05
05D_SANT_VCWPD	Ag		6	46.51	62.6	53.03	76.56	290	4.35
04D_VENTURA	Urban	13		ND	0.16	0.25	0.45	290	0.23

^{1.} Interim WLAs for stormwater permittees and interim LAs for agricultural dischargers are effective until March 2022 (R4-2006-012).

NS – Not sampled, dry

Results in **bold type** exceed applicable interim WLA or interim LA.

__

^{1.} There are no urban land use monitoring sites in these reaches.

No wet weather exceedances were observed in the TMDL analysis so no interim limits were assigned for the TMDL. For comparison purposes, the wet weather targets were included in this table.

RW – Receiving water compliance site; Ag – Agricultural; Urban – Urban

¹ Refer to Table 5 for a list of land use sites in each subwatershed.

As noted in the table above, high levels of selenium were also observed at 05D_SANT_VCWPD, an agricultural use site in the upper reach of the subwatershed. As discussed in the TMDL, a primary source of selenium in Revolon Slough is considered to be rising groundwater levels and the interim allocations were to be considered in this context.

Salts

TDS and sulfate concentrations in Revolon Slough at 04_WOOD exceeded the urban dischargers' interim MS4 WLA during all twelve months of the monitoring period. Boron concentrations exceeded the urban dischargers' interim MS4 WLA and agricultural dischargers' interim LAs during seven of the twelve months during the monitoring period. In addition, boron concentrations exceeded only the urban dischargers' interim MS4 WLA during the remaining five months of the monitoring period. A summary of monitoring results for total dissolved solids, sulfate, and boron at sites in the Revolon Slough subwatershed are shown in Table 35 through Table 37 below.

Table 35. Total Dissolved Solids Monitoring Data (mg/L) in Revolon Slough

Site ID	Use	Interim	Limits	Jul-13	Aug 12	Con 12	Oct 12	Nov 12	Dec 12	lon 11	Ech 11	Mor 14	Anu 11	May 14	lun 44
	000	WLA	LA	Jui-13	Aug-13	Sep-13	OCt-13	NOV-13	Dec-13	Jan-14	reb-14	Mar-14	Apr-14	May-14	Jun-14
04_WOOD 1	RW	1720	3995	3689	3713	3858	2940	3368	3392	3365	3525	3628	3525	3488	3767
04D_WOOD ²	Ag		3995		NS			1156			NS			NS	
04D_VENTURA ²	Urban	1720			690			841			757			960	

NS=no sample, dry

1. Data presented are monthly means

2. Data presented are quarterly dry weather grabs

Results in **bold type** exceed applicable interim WLA or interim LA.

Table 36. Sulfate Monitoring Data (mg/L) in Revolon Slough

Site ID	Use	Interim	Limits	Jul-13	Λυα-13	Son-12	Oct-13	Nov-13	Doc-13	lan-14	Eob-14	Mar-14	Apr-14	May-14	Jun-14
		WLA	LA	Jul-13	Aug-13	3eh-13	OCI-13	1404-13	Dec-13	Jaii-14	reb-14	IVIAI-14	Apr-14	Way-14	Juli-14
04_WOOD ¹	RW	1289	1962	1850	1862	1935	1475	1690	1702	1688	1768	1820	1768	1750	1889
04D_WOOD ²	Ag		1962		NS			1021			NS			NS	
04D_VENTURA ²	Urban	1289			220			189			244			263	

NS=no sample, dry

1. Data presented are monthly means

2. Data presented are quarterly dry weather grabs

Results in **bold type** exceed applicable interim WLA or interim LA.

Table 37. Boron Monitoring Data (mg/L) in Revolon Slough

Site ID	Use	Interim I	Limits	Jul 12	Aug 12	Con 12	Oct 12	Nov 12	Dog 12	lon 14	Ech 14	Mor 14	Apr 14	May-14	lun 14
	-	WLA	LA	Jui-13	Aug-13	3ep-13	OCI-13	NOV-13	Dec-13	Jaii-14	rep-14	War-14	Apr-14	Way-14	Juli-14
04_WOOD ¹	RW	1.3	1.8	1.89	1.91	1.98	1.52	1.74	1.75	1.73	1.81	1.86	1.81	1.79	1.93
04D_WOOD ²	Ag		1.8		NS			1.2			NS			NS	
04D_VENTURA ²	Urban	1.3			0.24			0.39			0.25			0.41	

NS=no sample, dry

1. Data presented are monthly means

2. Data presented are quarterly dry weather grabs

Results in **bold type** exceed the applicable interim WLA or interim LA

As noted in the previous tables, high levels of total dissolved solids, sulfate, and boron were measured at the 04D_WOOD monitoring site during the November 2013 quarterly event, when flow was present. However, measured concentrations did not exceed the interim agricultural LAs. This site represents agricultural discharge water quality in the Revolon Slough subwatershed. Samples were not taken during the August 2013, February 2014, and May 2014 sampling events due to no flow being present. 04D_VENTURA, which is an urban land use site in the upper Revolon Slough watershed, had concentrations consistently below the interim MS4 WLAs for TDS, sulfate, and boron. The unusually dry conditions in the watershed may be contributing to the higher salts concentrations observed in the receiving waters.

Revisions and Recommendations

The QAPP specifies that during the completion of each CCWTMP annual report, revisions to the standard procedures will be made, including: site relocation, ceasing monitoring efforts and/or deleting certain constituents from sample collection. Some revisions were recommended in the previous annual reports; however no response from the Regional Water Board has been received to date. In order to continue implementing the CCWTMP in an adaptive and cost effective manner, some of the previously requested revisions have been carried out. The following revisions to the QAPP include those previously requested in past annual reports, actions taken, and additional recommendations:

First Year Annual Report Recommendations and Actions

- The relocation of certain CCWTMP land use sites to match new locations of the Ventura County Stormwater Quality Management Program MS4 Stormwater sites, which are monitored by the VCWPD as Principal Permittee under the Ventura County MS4 Permit:
 - o The relocations are still being evaluated by the Stakeholders and will be provided to the Regional Water Board as part of the updated QAPP.
- Cease sampling the Nitrogen TMDL investigation sites. These sites were selected to characterize land use discharges to meet a special study requirement in the TMDL. The monitoring was only scheduled to occur for one year¹, so this monitoring has now been completed.
 - o Nutrient samples were collected from land use sites through the second year of monitoring, but ceased starting with year three.
 - Nutrient sampling of agricultural land use sites was re-started beginning with event 31 to assess compliance with the Conditional Ag Waiver (Order No. R4-2010-0186) and inform BMP implementation.
- Cease monthly monitoring of metals after the June 2010 monitoring event and return to quarterly for the remainder of the program. This completes one year of monitoring and prevents additional monitoring costs from being incurred while the data evaluation is occurring. Monthly monitoring can be reinitiated, if deemed necessary by the Regional Water Board based on the data review.
 - o Monthly metals monitoring ended after the completion of event 21 in June 2010.
- The triazine herbicides atrazine, prometryn, and simazine were included in the monitoring program as they have been detected in toxic samples and have the potential to increase toxicity of OP pesticides.² However, triazine herbicides are not on the 303(d) list and have not been identified as contributing to or increasing toxicity in the CCW in

¹ Larry Walker Associates (LWA). 2004. Nonpoint Source Monitoring Workplan for the TMDL for Nitrogen Compounds and Related Effects in Calleguas Creek. July 16, 2004.

² Anderson, T. D. and Lydy, M. J. 2002. Increased toxicity to invertebrates associated with a mixture of atrazine and organophosphate insecticides. Environ. Tox. and Chem. V21, No. 7, 1507–1514.

either the historical data or in the recently collected data. As such, conducting analysis for triazine herbicides will be discontinued.

- o Triazine analysis continued through year two and the first two dry weather and first storm event of year three. Triazine sample collection has not been performed since the end of 2010.
- Cease conducting Toxicity Evaluation Investigations (TIEs) at the 04_WOOD site
 (Revolon Slough at Wood Road crossing) as detailed in the letter sent to the Regional
 Water Board on July 20, 2009 (Appendix D of CCWTMP First Year Annual Monitoring
 Report). Toxicity has been observed at this site and as outlined in the letter, the
 stakeholders would rather invest resources into implementation activities targeting load
 reductions.
 - TIEs at the 04_WOOD site were not initiated when water quality toxicity was observed during the second, third, fourth, and six years of monitoring. However, the frequency of toxicity has greatly decreased in recent years, with only one occurrence each in years three and four during wet weather and one during year six during dry weather.

Second Year Annual Report Recommendations and Actions

- Cease PCBs monitoring at all land use sites.
 - o PCB analysis has continued since there is no cost savings in not obtaining these results.

Third Year Annual Report Recommendations and Actions

- Ending toxicity investigation monitoring. As outlined in the Toxicity Review section of this report, significant mortality has not occurred at either the two water column or two sediment toxicity investigation sites in the three years of the CCWTMP.
 - Although toxicity monitoring has not demonstrated ongoing toxicity at these sites that would warrant continued monitoring, toxicity monitoring was restarted and samples will be collected until sufficient data are available to support a delisting of these reaches.
- Revise the nitrogen TMDL monitoring to reflect a subwatershed approach consistent with the other TMDLs. The nitrogen TMDL was adopted many years before the remaining CCW TMDLs and required a different monitoring approach. Since the compliance deadlines for this TMDL have been reached and many of the TMDL reaches are in compliance, a revised monitoring approach that provides more consistency with the other TMDLs is warranted. Modifications to remove sites for reaches upstream of a subwatershed monitoring location are recommended. These changes are being addressed in the revised QAPP.

Fourth Year Annual Report Recommendations and Actions

Cease quarterly monitoring in Mugu Lagoon. Metals and general chemistry are the only
constituents being monitored during these events, and sufficient data is available to
support delisting in the lagoon.

o Quarterly monitoring continues while the Stakeholders are evaluating the overall monitoring program. The revised QAPP will incorporate this change.

Recommended revisions from the first year annual report have been implemented as outlined above. The second year recommendation was not implemented since continuing to report PCB results requires no additional effort. Third and fourth year recommendations are being incorporated into the revised QAPP.

In addition to the recommendations presented above, the QAPP is being updated to incorporate the Salts TMDL monitoring approach. Additional modifications that reflect the most current lab methods and procedures for the field conditions are also part of the QAPP update process. Opportunities to further coordinate the monitoring efforts within the watershed are being investigated.

Appendix A: Monitoring Event Summaries for Toxicity, OC Pesticides, Nutrients, Metals, and Salts

Managment Program 2014-2015 Annual Report Calleguas Creek Watershed TMDL Monitoring Program Post Event Summary

Event 39: Quarterly and Sediment Sampling

Sampling Crews: Kinnetic Laboratories, Inc. (KLI), and Fugro

Aug 21, 2013

Crew #1: Greg Cotten (KLI), Justin Martos (Fugro)
Crew #2: Amy Howk (KLI), Tim Nicely (Fugro)

Aug 22, 2013

Crew #1: Greg Cotten (KLI), Tim Nicely (Fugro)
Crew #2: Amy Howk (KLI), Justin Martos (Fugro)

Sampling Dates: Receiving water and land use sites: August 21st and 22nd, 2013

Sediment sampling: August 21st and 22nd, 2013

Sampling Type: Water Chemistry, Toxicity, and Salts TMDL, Sediment

SITES SAMPLED

		Constituents							
Site ID	Sample Date	General Parameters	Toxicity	Metals	Nutrients	PCBs, OP, OC, and Pyrethroid Pesticides	Salts		
01T_ODD2_DCH	8-22-13	x		Х	х	x			
02_PCH	8-22-13	х			х				
03_UNIV	8-21-13	х	х	Х	х	х	Х		
04_WOOD	8-21-13	х	Х	Х	х	х	Х		
04D_VENTURA	8-22-13	х		Х		х	Х		
05_CENTR	8-22-13	х			х				
05D_SANT_VCWPD	8-22-13	х		Х	х	х			
06_SOMIS	8-21-13	х	х		х	х			
07_MADER	8-22-13	х			х				
07_HITCH	8-21-13	х	х		х	х			
07_TIERRA	8-22-13	х					Х		
07D_CTP	8-22-13	х				х	Х		
07T DC H	8-22-13	х				х			
9A_HOWAR	8-21-13	х			х		Х		
9B_ADOLF	8-21-13	х	Х		х	х			

Ventura Countywide Stormwater Quality

Managment Program 201	4-2015 Annual	Report	Page E4-134	Const	tituents	Attachme	ent E4
Site ID	Sample Date	General Parameters	Toxicity	Metals	Nutrients	PCBs, OP, OC, and Pyrethroid Pesticides	Salts
9BD_ADOLF	8-22-13	х		Х		x	Х
9B_BARON	8-22-13	х					Х
10_GATE	8-21-13	х	х		х	х	
12_PARK	8-22-13	х			х		
13_BELT	8-21-13	х	Х		х	х	
13_SB_HILL	8-22-13	х				х	Х

SITES NOT SAMPLED

OTTES NOT SAMELED				
Site ID	Reason for Omission			
02D_BROOM	Dry			
04D_WOOD	Dry			
06T_FC_BR	Dry			
07D_HITCH_LEVEE2	Dry			
9BD_GERRY	Dry			

SEDIMENT SAMPLED

Site ID	Sediment Toxicity	Sediment Chemistry
02_PCH		Х
03_UNIV	Х	Х
04_WOOD	Х	Х
06_SOMIS		Х
07_HITCH		Х
9A_HOWAR		Х
9B_ADOLF		Х

DEVIATIONS FROM QAPP

Site ID	Deviation
02_PCH	Flow was not measured due to strong tidal influence.
04_WOOD	The conductivity at the site (>3000 uS/cm) was greater than the accepted range for the designated test species (<i>Ceriodaphnia dubia</i>). The QAPP requires the use of <i>Americamysis bahia</i> . However, <i>Hylella azteca</i> is identified by SWAMP as an appropriate water test species when conductivity is greater than 3,000 us/cm and is currently utilized by the Ventura County Irrigated Lands Group which conducts monitoring in the watershed. To maintain consistency with an existing watershed program, the toxicity testing lab (Pacific EcoRisk) utilized <i>Hylella azteca</i> in place of <i>Americamysis bahia</i> .
04D_VENTURA	Intermediate container (Ziploc bag) used to fill sample bottles.
05D_SANT_VCWPD	Intermediate container (Ziploc bag) used to fill sample bottles.
06_SOMIS	Intermediate container (Ziploc bag) used to fill sample bottles.
07D_CTP	Intermediate container (Ziploc bag) used to fill sample bottles.
07T_DC_H	Intermediate container (Ziploc bag) used to fill sample bottles.
9BD_ADOLF	Intermediate container (Ziploc bag) used to fill sample bottles.

FOLLOW UP ACTIONS

None

ADDITIONAL COMMENTS

- Salt samples at sites 07 TIERRA, 9B BARON, 04 WOOD, 03 UNIV and 9A HOWAR were taken next to the installed sensor.
- Sediment chemistry at tox sites: WOOD and UNIV were from samples collected alongside the bulk sediment collection and is not an aliquot of the tox sediment itself.

Prepared by:	Amy Howk, KLI	Date:	September 3, 2013
Approved by:	Greg Cotten, KLI	Date:	September 13, 2013
Approved by:	Michael Marson, LWA	Date:	September 16, 2013

Calleguas Creek Watershed TMDL Monitoring Program Post Event Summary

Event 39: Freshwater Tissue

Sampling Crew: Cardno ENTRIX: J. Mulder, M. Olesen

Sampling Date: August 27-28, 2013

Sampling Type: Tissue Chemistry - Freshwater

SITES SAMPLED

	Fish collected at	Constituents						
Site ID	Site?	% Lipids	PCBs and OC Pesticides	Mercury and Selenium	Chlorpyrifos			
04_WOOD	Yes	Х	Х	Х	Х			
03_UNIV	Yes	Х	Х					
9B_ADOLF	Yes	X	Χ					
06_SOMIS	No	Х	Х					
07_HITCH	Yes	Х	X					

SITES NOT SAMPLED

06_SOMIS

DEVIATIONS FROM QAPP

None

FOLLOW UP ACTIONS

None

ADDITIONAL COMMENTS

Prepared by: Amy Storm, LWA Date: September 16, 2014

Approved by: Michael Marson, LWA Date: September 18, 2014

Calleguas Creek Watershed TMDL Monitoring Program Post Event Summary

Event 39: Mugu Lagoon Water

Sampling Crew: MBC Applied Environmental Sciences: Wayne Dossett, James

Nuñez, D.J. Schuessler

Sampling Date: 22 August 2013

Sampling Type: Water Chemistry

SITES SAMPLED

	Constituents						
Site ID	General Water Quality Parameters	тос	DOC	TSS	PCBs, OP, OC, and Pyrethroid Pesticides	Nutrients	Metals w/ Hg
01_BPT_14	X		X	X			X
Central Western Arm	Λ		Λ	Λ			Λ
01_BPT_15	X		X	X			X
Central Lagoon	Α		Λ	Λ			Λ
01_BPT_3	X		X	X			X
Eastern Arm	Α		Λ	Λ			Λ
1_BPT_6							
East Western Arm	X		X	X			X
01_RR_BR							
Ronald Reagan Bridge	X		X	X	X	X^1	X
01_SG_74 Central Lagoon S. of Drain #7	X		X	X			X

^{1.} TKN, Ammonia-N, Organic-N, Total Phosphorus, Nitrate-N, Nitrate-N, Orthophosphate-P.

SITES NOT SAMPLED

None

DEVIATIONS FROM QAPP

Station 01_SG_74 Central Lagoon S. of Drain #7 was accessed by land in compliance with the NBVC biologist's request that the field team conduct walk-in sampling at that station on a permanent basis to avoid harassment of harbor seals. The collection at this site was consistent with previous samples in the area. GPS coordinates of the sample collection locations are provided on the field log sheet.

FOLLOW UP ACTIONS

None

Prepared by:	David Vilas, MBC	Submittal Date:	26 August 2013
Approved by:	Michael Marson, LWA	Submittal Date:	August 26, 2013

Managment Program 2014-2015 Annual Report Each Mattershed TMDL Monitoring Program Post Event Summary

Event 40: Quarterly Sampling

Sampling Crews: Kinnetic Laboratories, Inc. (KLI), Fugro

Crew #1: Greg Cotten (KLI), Jon Toal (KLI)

Crew #2: Tim Nicely (Fugro), Joe Reeves (Fugro), Gabriella Baeza-Costaneda

(Fugro)

Sampling Dates: Receiving water and land use sites: November 5th and 6th, 2013

Sampling Type: Water Chemistry, Toxicity, and Salts

SITES SAMPLED

		Constituents					
Site ID	Sample Date	General Parameters	Toxicity	Metals	Nutrients	PCBs, OP, OC, and Pyrethroid Pesticides	Salts
04D_WOOD	11/5/13	Х		X	X	X	Х
04_WOOD	11/5/13	Х	Х	X	X	Х	Х
04D_VENTURA	11/5/13	Х		Х		Х	Х
01T_ODD2_DCH	11/6/13	Х		Х	Х	Х	
02_PCH	11/5/13	Х			Х		
02D_BROOM	11/6/13	Х		Х	Х	Х	
03_UNIV	11/5/13	Х	Х	Х	Х	Х	Х
9B_BARON	11/5/13	Х					Х
9B_ADOLF	11/5/13	Х	Х		Х	Х	
9BD_ADOLF	11/5/13	Х		Х		Х	Х
9A_HOWAR	11/6/13	Х			Х		Х
05D_SANT_VCWPD	11/5/13	Х		Х	Х	Х	
05_CENTR	11/6/13	Х			Х		
13_SB_HILL	11/6/13	Х				Х	Х
10_GATE	11/6/13	Х			Х		
12_PARK	11/6/13	Х			Х		

Ventura Countywide Stormwater Quality

Managment Program 2	014-2015 Annu	al Report Page E4-140 Constituents			uents	Attachment E4		
Site ID	Sample Date	General Parameters	Toxicity	Metals	Nutrients	PCBs, OP, OC, and Pyrethroid Pesticides	Salts	
13_BELT	11/5/13	Х	Х		X	Х		
06T_FC_BR	11/6/13	Х			Х	Х		
06_SOMIS	11/5/13	Х	Х		Х	Х		
07_HITCH	11/5/13	Х	Х		Х	Х		
07_MADER	11/6/13	Х			Х			
07D_CTP	11/6/13	Х				Х	Х	
07T_DC_H	11/6/13	X				Х		
07_TIERRA	11/5/13	Х					Х	

SITES NOT SAMPLED

0.1.20 NO. 07 IIII 222				
Site ID	Reason for Omission			
07D_HITCH_LEVEE	Site was dry.			
9BD_GERRY	Site was dry.			

DEVIATIONS FROM QAPP

Site ID	Deviation
02_PCH	Flow was not measured due to tidal influence.
04_WOOD	The conductivity at the site (3,710 uS/cm) was greater than the accepted range for the designated test species (<i>Ceriodaphnia dubia</i>). The QAPP requires the use of <i>Americamysis bahia</i> . However, <i>Hylella azteca</i> is identified by SWAMP as an appropriate water test species when conductivity is greater than 3,000 us/cm and is currently utilized by the Ventura County Irrigated Lands Group which conducts monitoring in the watershed. To maintain consistency with an existing watershed program, the toxicity testing lab (Pacific EcoRisk) utilized <i>Hylella azteca</i> in place of <i>Americamysis bahia</i> .
04D_VENTURA	Intermediate container (Ziploc bag) used to fill sample bottles.
07D_CTP	Intermediate container (Ziploc bag) used to fill sample bottles.
06_SOMIS	Intermediate container (1L HDPE) used to fill sample bottles
9BD_ADOLF	Intermediate container (Ziploc bag) used to fill sample bottles.

FOLLOW UP ACTIONS

None

ADDITIONAL COMMENTS

06T_FC_BR turbidity was above 2000 NTU, the field meters limit of accuracy. This analysis was added to the COC for measurement at Physis.

04D_WOOD dissolved oxygen was recorded as 2.14 mg/L and 21.3% Sat. T.Nicely (Fugro) reports the meter was deployed correctly and the probe was properly submerged.

Prepared by:	Greg Cotten, KLI	Date:	November 11 th , 2013
Reviewed by:	Amy Howk, KLI	Date:	November 15 th , 2013
Approved by:	Michael Marson, LWA	Date:	November 26 th , 2013

Calleguas Creek Watershed TMDL Monitoring Program Post Event Summary

Event 40: Mugu Lagoon Water

Sampling Crew: MBC Applied Environmental Sciences: Wayne Dossett, D.J.

Schuessler

Sampling Date: 5 November 2013

Sampling Type: Water Chemistry

SITES SAMPLED

	Constituents						
Site ID	General Water Quality Parameters	тос	DOC	TSS	PCBs, OP, OC, and Pyrethroid Pesticides	Nutrients	Metals w/ Hg
01_BPT_14 Central Western Arm	X		X	X			X
01_BPT_15 Central Lagoon	X		X	X			X
01_BPT_3 Eastern Arm	X		X	X			X
1_BPT_6 East Western Arm	X		X	X			X
01_RR_BR Ronald Reagan Bridge	X		X	X	X ¹	X^2	X
01_SG_74 Central Lagoon S. of Drain #7	X		X	X			X

^{1.} Includes Triazines

SITES NOT SAMPLED

None

DEVIATIONS FROM QAPP

Station 01_SG_74 Central Lagoon S. of Drain #7 was accessed by land in compliance with the NBVC biologist's request that the field team conduct walk-in sampling at that station on a permanent basis to avoid harassment of harbor seals. The collection at this site was consistent with previous samples in the area. GPS coordinates of the sample collection locations are provided on the field log sheet.

FOLLOW UP ACTIONS

None

^{2.} TKN, Ammonia-N, Organic-N, Total Phosphorus, Nitrate-N, Nitrate-N, Orthophosphate-P.

Prepared by:	David Vilas, MBC	Submittal Date:	7 November 2013
Approved by:	Amy Storm, LWA	Submittal Date:	17 November 2013

Managment Program 2014-2015 Annual Report Each Mattershed TMDL Monitoring Program Post Event Summary

Event 41: Quarterly Sampling

Sampling Crews: Kinnetic Laboratories, Inc. (KLI), Fugro

Crew #1: KLI: Greg Cotten, Spencer Johnson **Crew #2:** Fugro: Tim Nicely, Joe Reeves

Sampling Dates: Receiving water and land use sites: February 19th and 20th, 2014

Sampling Type: Water Chemistry, Toxicity, and Salts

SITES SAMPLED

		Constituents						
Site ID	Sample Date	General Parameters	Toxicity	Metals	Nutrients	PCBs, OP, OC, Triazines and Pyrethroid Pesticides	Salts	
04_WOOD	02/19	X	X	Х	Х	Х	Х	
04D_VENTURA	02/19	Х		Х		Х	Х	
01T_ODD2_DCH	02/19	X		Х	Х	Х		
02_PCH	02/20	X			Х			
02D_BROOM	02/19	Х		Х	Х	Х		
03_UNIV	02/19	Х	Х	Х	Х	Х	Х	
9B_BARON	02/19	Х					Х	
9B_ADOLF	02/19	X	X		Х	Х		
9BD_ADOLF	02/19	X		Х		Х	Х	
9A_HOWAR	02/20	Х			Х		Х	
05D_SANT_VCWPD	02/19	Х		Х	Х	Х		
05_CENTR	02/20	Х			Х			
13_SB_HILL	02/20	Х				Х	Х	
10_GATE	02/19	Х	Х		Х	Х		
12_PARK	02/19	Х			Х			
13_BELT	02/19	Х			Х			

Ventura Countywide Stormwater Quality

Managment Program 2			Report Page E4-145 Constituents				
Site ID	Sample Date	General Parameters	Toxicity	Metals	Nutrients	PCBs, OP, OC, Triazines and Pyrethroid Pesticides	Salts
06_SOMIS	02/19	Х	Х		Х	Х	
07_HITCH	02/19	Х	X		X	Х	
07_MADER	02/20	Х			X		
07D_CTP	02/20	Х				Х	Х
07T_DC_H	02/20	Х				Х	
07_TIERRA	02/19	Х					Х

SITES NOT SAMPLED

011201101 0711111 225				
Site ID	Reason for Omission			
04D_WOOD	Site was dry.			
06T_FC_BR	Site was dry.			
07D_HITCH_LEVEE	Site was dry.			
9BD_GERRY	Site was dry.			

DEVIATIONS FROM QAPP

Site ID	Deviation
02_PCH	Flow was not measured due to tidal influence. Site was sampled near low tide to maximize watershed water.
	TSS container used as intermediate container. The conductivity at the site (3,420 uS/cm) was greater than the
04_WOOD	accepted range for the designated test species (<i>Ceriodaphnia dubia</i>). The QAPP requires the use of <i>Americamysis bahia</i> . However, <i>Hylella azteca</i> is identified by SWAMP as an appropriate water test species when conductivity is greater than 3,000 us/cm and is currently utilized by the Ventura County Irrigated Lands Group which conducts monitoring in the watershed. To maintain consistency with an existing watershed program, the toxicity testing lab (Pacific EcoRisk) utilized <i>Hylella azteca</i> in place of <i>Americamysis bahia</i> .
04D_VENTURA	Intermediate container (Ziploc bag) used to fill sample bottles.
07D_CTP	Intermediate container (Ziploc bag) used to fill sample bottles.
07T_DC_H	Intermediate container (Ziploc bag) used to fill sample bottles.
9BD_ADOLF	Intermediate container (Ziploc bag) used to fill sample bottles.

FOLLOW UP ACTIONS

None

ADDITIONAL COMMENTS

None

Prepared by: Greg Cotten, KLI

Reviewed by: Amy Howk, KLI

Date: April 11, 2014

Date: April 14, 2014

Calleguas Creek Watershed TMDL Monitoring Program Post Event Summary

Event 41: Mugu Lagoon Water

Sampling Crew: MBC Applied Environmental Sciences: James Nuñez, D.J.

Schuessler

Sampling Date: 3 February 2014

Sampling Type: Water Chemistry

SITES SAMPLED

	Constituents						
Site ID	General Water Quality Parameters	тос	DOC	TSS	PCBs, OP, OC, and Pyrethroid Pesticides	Nutrients	Metals w/ Hg
01_BPT_14							
Central Western Arm	X		X	X			X
01_BPT_15	X		X	X			X
Central Lagoon	A		Λ	Λ			Λ
01_BPT_3	X		X	X			X
Eastern Arm	Λ		Λ	Λ			Λ
1_BPT_6							
East Western Arm	X		X	X			X
01_RR_BR							
Ronald Reagan Bridge	X		X	X	X	X^1	X
01_SG_74 Central Lagoon S. of Drain #7	X		X	X			X

^{1.} TKN, Ammonia-N, Organic-N, Total Phosphorus, Nitrate-N, Nitrate-N, Orthophosphate-P.

SITES NOT SAMPLED

None

DEVIATIONS FROM QAPP

Between 0.02 and 0.04 inches of rain fell in the study area in 24 hours previous to sampling, however, flow in Calleguas Creek was at baseline condition at the time of sampling. Station 01_SG_74 Central Lagoon S. of Drain #7 was accessed by land in compliance with the NBVC biologist's request that the field team conduct walk-in sampling at that station on a permanent basis to avoid harassment of harbor seals. The collection at this site was consistent with previous samples in the area. GPS coordinates of the sample collection locations are provided on the field log sheet.

FOLLOW UP ACTIONS

None

Prepared by:	David Vilas, MBC	Submittal Date:	4 February 2014
Approved by:	Michael Marson, LWA	Submittal Date:	February 5, 2014

Calleguas Creek Watershed TMDL Monitoring Program Post Event Summary

Event 42: Wet Weather Sampling

Sampling Crews: Kinnetic Laboratories, Inc. (KLI), Fugro

Crew #1: Greg Cotten, Broc Johnson (KLI)

Crew #2: Amy Howk, Jon Toal (KLI)

Crew #3: Justin Martos, Tom Cromwell (Fugro)

Crew #4: Tim Nicely, Jeff Polis (Fugro)

Sampling Dates: Receiving water and land use sites: February 28, 2014

Sampling Type: Water Chemistry, Toxicity, and Salts

SITES SAMPLED

		Constituents					
Site ID	Sample Date	General Parameters	Toxicity	Metals	Nutrients	PCBs, OP, OC, and Pyrethroid Pesticides	Salts
04D_WOOD	02-28-14	Х		Х	X	Х	Х
04_WOOD	02-28-14	Х	X	Х	X	Х	Х
04D_VENTURA	02-28-14	Х		Х		Х	Х
01T_ODD2_DCH	02-28-14	Х		Х	Х	Х	
02D_BROOM	02-28-14	Х		Х	Х	Х	
03_UNIV	02-28-14	Х	X	Х	Х	Х	Х
9B_BARON	02-28-14	Х					Х
9B_ADOLF	02-28-14	Х	Х		Х	Х	
9BD_ADOLF	02-28-14	Х		Х		Х	Х
9BD_GERRY	02-28-14	Х		Х	Х	Х	Х
9A_HOWAR	02-28-14	Х					Х
05D_SANT_VCWPD	02-28-14	Х		Х	Х	Х	
05_CENTR	02-28-14	Х			Х		
13_SB_HILL	02-28-14	Х				Х	Х
10_GATE	02-28-14	Х	Х		Х	Х	

		Constituents						
Site ID	Sample Date	General Parameters	Toxicity	Metals	Nutrients	PCBs, OP, OC, and Pyrethroid Pesticides	Salts	
13_BELT	02-28-14	Х	Х			Х		
06T_FC_BR	02-28-14	Х			Х	Х		
06_SOMIS	02-28-14	Х	Х		Х	Х		
07D_HITCH_LEVEE2	02-28-14	Х			Х	Х	Х	
07_HITCH	02-28-14	Х	Х		Х	Х		
07_MADER	02-28-14	Х			Х			
07D_CTP	02-28-14	Х				Х	Х	
07T_DC_H	02-28-14	Х				Х		
07_TIERRA	02-28-14	Х					Х	

SITES NOT SAMPLED

Site ID	Reason for Omission
	All sites sampled.

DEVIATIONS FROM QAPP

Site ID	Deviation
9BD_GERRY	Intermediate container (Ziploc bag) used to fill sample bottles.
06_SOMIS	Intermediate container (bucket) used to fill sample bottles from bridge.
05D_SANT_VCWPD	Intermediate container (TSS bottle) used to fill sample bottles.
05_CENTR	Intermediate container (TSS bottle) used to fill sample bottles.
9BD_ADOLF	Intermediate container (TSS bottle) used to fill sample bottles.

FOLLOW UP ACTIONS

None

ADDITIONAL COMMENTS

The following sites' flow were estimated or had incomplete measurements due to high conditions: 07_TIERRA, 07_MADER, 07D_CTP, 07_HITCH, 9B_BARON, 9A_HOWAR, 10_GATE, 13_BELT, 13_SB_HILL, 9B_ADOLF, 05D_SANT_VCWPD, 05_CENTR, 03_UNIV, 04_WOOD, 04D_VENTURA, 02D_BROOM

Water quality meters

- Team 2's meter screen failed after their 2nd site. Grabs were taken at the sites after the screen failed. These grabs were stored on ice and measured less than 7 hours later by meter 3760 which passed post calibration testing. These sites are: 9B_BARON, 9BD_GERRY, 10_GATE, and 13_BELT. The sites measured before the screen failure were: 13_SB_HILL and 9A_HOWAR. The meter easily passed initial calibration and apparently functioned normally up to the point of screen failure.
- Team 1's turbidity sensor failed initial calibration. Grab samples were collected and measured with meter 3760 within 7hrs 30 minutes of sample time. These sites were: 07T_DCH, 07_MADER, 07D_CTP, 07_TIERRA, 07D_HITCH_LEVEE2, 07_HITCH.

Analytical additions: Turbidity measured by lab because exceeded meter capabilities (>1000 NTU): 07_HITCH, 06T_FC_BR, 06_SOMIS, 05D_SANT_VCWPD, 05_CENTR, 03_UNIV, 04_WOOD, 01T_ODD2_DCH,

Meter assignments:

Team 1 (KLI): Hach Quanta #2692

Team 2 (KLI): YSI Sonde # 6920 w/ handheld readout

Team 3 (Fugro): Hach Quanta #3760 Team 4 (Fugro): Hach Quanta #3755

Prepared by: Greg Cotten, KLI		Date:	March 18, 2014
Reviewed by:	Amy Howk, KLI	Date:	March 24, 2014
Reviewed by:	Michael Marson, LWA	Date:	April 03, 2014

Managment Program 2014-2015 Annual Report Ershed TMDL Monitoring Program Post Event Summary

Event 43: Quarterly Sampling

Sampling Crews: Kinnetic Laboratories, Inc. (KLI), Fugro

Crew #1: Greg Cotten (KLI), Amy Howk (KLI) Crew #2: Tim Nicely (Fugro), Joe Reeves (Fugro)

Sampling Dates: Receiving water and land use sites: May 28th and 29th, 2014

Sampling Type: Water Chemistry, Toxicity, and Salts

SITES SAMPLED

		Constituents							
Site ID	Sample Date	General Parameters	Toxicity	Metals	Nutrients	PCBs, OP, OC, and Pyrethroid Pesticides	Salts		
04_WOOD	5-29-14	Х	Х	Х	Х	Х	Х		
04D_VENTURA	5-28-14	Х		Х		Х	Х		
01T_ODD2_DCH	5-28-14	Х		Х	Х	Х			
02_PCH	5-29-14	Х			Х				
02D_BROOM	5-28-14	Х		Х	Х	Х			
03_UNIV	5-29-14	Х	Х	Х	Х	Х	Х		
9B_BARON	5-28-14	Х					Х		
9B_ADOLF	5-29-14	Х	Х		Х	Х			
9BD_ADOLF	5-28-14	Х		Х		Х	Х		
9BD_GERRY	5-28-14	Х		Х	Х	Х	Х		
9A_HOWAR	5-28-14	Х			Х		Х		
05D_SANT_VCWPD	5-28-14	Х		Х	Х	Х			
05_CENTR	5-29-14	Х			Х				
13_SB_HILL	5-28-14	Х				Х	Х		
10_GATE	5-29-14	Х	Х		Х	Х			
12_PARK	5-28-14	Х			Х				
13_BELT	5-29-14	Х	Х		Х	Х			

Ventura Countywide Stormwater Quality

Managment Program 2	Report Page E4-153 Constituents Attachmer						
Site ID	Sample Date	General Parameters	Toxicity	Metals	Nutrients	PCBs, OP, OC, and Pyrethroid Pesticides	Salts
07D_HITCH_LEVEE	5-28-14	X			X	Х	Х
07_HITCH	5-29-14	Х	Х		Х	Х	
07_MADER	5-28-14	Х			Х		
07D_CTP	5-28-14	Х				Х	Х
07T_DC_H	5-28-14	Х				Х	
07_TIERRA	5-28-14	Х					Х

SITES NOT SAMPLED

Site ID	Reason for Omission
04D_WOOD	Site was dry.
06T_FC_BR	Site was dry.
06_SOMIS	Site was dry.

DEVIATIONS FROM QAPP

Site ID	Deviation
02_PCH	Flow was not measured due to tidal influence. Site was sampled near low tide to maximize watershed water.
04D_VENTURA	Intermediate container (Ziploc bag©) used to fill sample bottles.
07D_CTP	Intermediate container (Ziploc bag) used to fill sample bottles.
07D_HITCH_LEVEE2	Intermediate container (Ziploc bag) used to fill sample bottles.
07T_DC_H	Intermediate container used to fill sample bottles.
9BD_ADOLF	Intermediate container (Ziploc bag) used to fill sample bottles.

ADDITIONAL COMMENTS

05D_SANT_VCWPD: Site was being scraped by county 'skip loader' upon first site visit. Water was turbid and not usual conditions so it wasn't sampled. Crew returned 3 hours later and determined it had apparently returned to base flow conditions and water quality 'looked clear with even flow.' Location was sampled at this time.

05_CENTR was sampled by field crew. Just <u>after</u> chemistry samples but <u>before</u> field meter measurements were taken, 'flow and turbidity increased, obviously due to upstream work...'. Lab was not able to reconcile the turbidity measurement as usual because the grab sample wouldn't have reflected it.

FOLLOW UP ACTIONS

None

Pre	pared by:	Greg Cotten, KLI	Date:	June 09, 2014
Rev	viewed by:	Amy Howk, KLI	Date:	June 20,2014
App	roved by:	Michael Marson, LWA	Date:	July 18, 2014

Calleguas Creek Watershed TMDL Monitoring Program Post Event Summary

Event 43: Mugu Lagoon Water

Sampling Crew: MBC Applied Environmental Sciences: James Nuñez, Wayne

Dossett

Sampling Date: 13 May 2014

Sampling Type: Water Chemistry

SITES SAMPLED

	Constituents						
Site ID	General Water Quality Parameters	тос	DOC	TSS	PCBs, OP, OC, and Pyrethroid Pesticides	Nutrients	Metals w/ Hg
01_BPT_14 Central Western Arm	X		X	X			X
01_BPT_15 Central Lagoon	X		X	X			X
01_BPT_3 Eastern Arm	X		X	X			X
1_BPT_6 East Western Arm	X		X	X			X
01_RR_BR Ronald Reagan Bridge	X		X	X	X	\mathbf{X}^1	X
01_SG_74 Central Lagoon S. of Drain #7	X		X	X			X

^{1.} TKN, Ammonia-N, Organic-N, Total Phosphorus, Nitrate-N, Nitrate-N, Orthophosphate-P.

SITES NOT SAMPLED

None

DEVIATIONS FROM QAPP

Station 01_SG_74 Central Lagoon S. of Drain #7 was accessed by land in compliance with the NBVC biologist's request that the field team conduct walk-in sampling at that station on a permanent basis to avoid harassment of harbor seals. The collection at this site was consistent with previous samples in the area. GPS coordinates of the sample collection locations are provided on the field log sheet.

FOLLOW UP ACTIONS

None

Prepared by:	David Vilas, MBC	Submittal Date:	16 May 2014
Approved by:	Michael Marson, LWA	Submittal Date:	03 June 2014

Appendix B:

Calibration Event Summary for Salts TMDL

The following section provides a summary of the monitoring events not covered by our quarterly or wet weather monitoring completed during the sixth year of monitoring. The continuous sensor sites (03_UNIV, 04_WOOD, 9A_HOWAR, 9B_BARON, & 07_TIERRA) were visited monthly for calibration checks and flow measurements.

SUMMARY OF MONTHLY EVENTS

Monthly sampling events included only measuring electrical conductivity (EC), temperature, and chloride (no grab samples were required during these visits). EC and temperature were measured using a Hach sensION5 meter and chloride was measured with Hach Quantab titration strips. The following section details each monthly event.

Table 1. Monthly sensor site visits

Site ID	Date Visited	EC	Discharge
04_WOOD	08/09/2013	Х	Х
03_UNIV	08/09/2013	X	X
07_TIERRA	08/09/2013	X	X
9A_HOWAR	08/09/2013	X	X
9B_BARON	08/09/2013	X	X
07_TIERRA	08/21/2013		X
04_WOOD	09/23/2013	Х	Х
03_UNIV	09/24/2013	Х	Х
07_TIERRA	09/23/2013	X	X
9A_HOWAR	09/23/2013	X	Х
9B_BARON	09/24/2013	Х	Х
9A_HOWAR	09/26/2013	X	X
04_WOOD	09/26/2013	X	X
04_WOOD	10/15/2013	Х	Х
03_UNIV	10/15/2013	X	X
07_TIERRA	10/15/2013	X	X
9A_HOWAR	10/15/2013	X	X
9B_BARON	10/15/2013	X	X
04_WOOD	11/06/2013	Х	Х
03_UNIV	11/06/2013	Х	Х
07_TIERRA	11/06/2013	X	X
9A_HOWAR	11/06/2013	X	X
9B_BARON	11/06/2013	X	X
04_WOOD	12/05/2013	Х	Х
03_UNIV	12/05/2013	X	Х
07_TIERRA	12/05/2013	X	X
9A_HOWAR	12/05/2013	X	Х
9B_BARON	12/05/2013	X	X
04_WOOD	01/07/2014	Х	Х
03_UNIV	01/07/2014	Х	Х
07_TIERRA	01/07/2014	X	X
9A_HOWAR	01/07/2014	X	X
9B_BARON	01/07/2014	X	X
04_WOOD	02/04/2014	Х	X
03_UNIV	02/04/2014	X	X
07_TIERRA	02/04/2014	X	X
9A_HOWAR	02/04/2014	X	X
9B_BARON	02/04/2014	X	X
- 04_WOOD	02/19/2014		X

Site ID	Date Visited	EC	Discharge
04_WOOD	03/06/2014	Х	Х
03_UNIV	03/06/2014	X	X
07_TIERRA	03/14/2014	X	X
9A_HOWAR	03/06/2014	X	X
9B_BARON	03/14/2014	X	X
9A_HOWAR	03/14/2014	X	X
04_WOOD	04/03/2014	Х	Х
03_UNIV	04/03/2014	X	X
07_TIERRA	04/03/2014	X	X
9A_HOWAR	04/03/2014	X	X
9B_BARON	04/03/2014	X	X
04_WOOD	05/06/2014	Х	Х
03_UNIV	05/06/2014	X	X
07_TIERRA	05/06/2014	X	X
9A_HOWAR	05/06/2014	X	X
9B_BARON	05/06/2014	X	X
04_WOOD	06/05/2014	Х	Х
03_UNIV	06/05/2014	X	X
07_TIERRA	06/05/2014	X	X
9A_HOWAR	06/05/2014	X	X
9B_BARON	06/05/2014	X	X
04_WOOD	07/10/2014	Х	X
03_UNIV	07/10/2014	X	X
07_TIERRA	07/10/2014	X	X
9A_HOWAR	07/10/2014	X	X
9B_BARON	07/10/2014	X	X
04_WOOD	07/16/2014	X	X
04_WOOD	07/25/2014	X	X
9A_HOWAR	07/25/2014	X	X

Appendix C:

Rating Curves and EC/Salt Relationships for Salts TMDL Compliance Sites for Monitoring Year July 2013-June 2014

RATING CURVES

Continuous water level time series data (5-min intervals) was converted to flow time series in cubic feet per second (cfs) using the United States Geological Society (USGS) shift-adjusted rating curve method. The method establishes a base rating for a given date range. Over the date range that shares a base rating, this rating is then shifted as necessary for subsets of the data to account for small changes in the geometry of natural channels often caused by deposition, scouring, and vegetation.

Rating curve equations for all sites took the form: $Q = c^* (Lvl + a + S)^b$ where,

Q = discharge (cfs)

Lvl = water level or "stage", referenced to depth sensor elevation (cm)

c = scaling coefficient

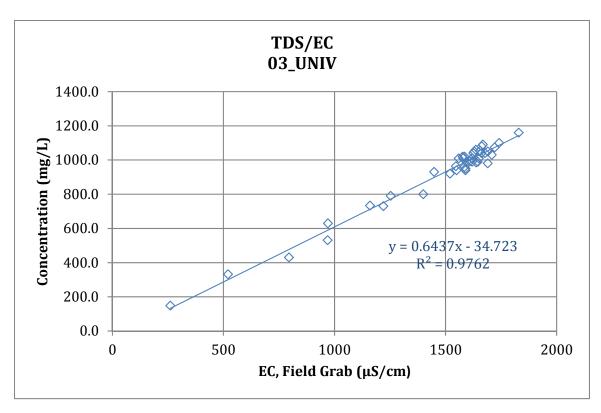
- a = coefficient accounting for the vertical difference between depth sensor elevation (stage = 0) and stage at zero discharge (cm)
- b = coefficient accounting for channel shape, natural channels fall between endpoints b=1.5 (square channel), and b=2.5 (triangular channel).
- S = stage shift, typically varies over time for natural channels (cm).

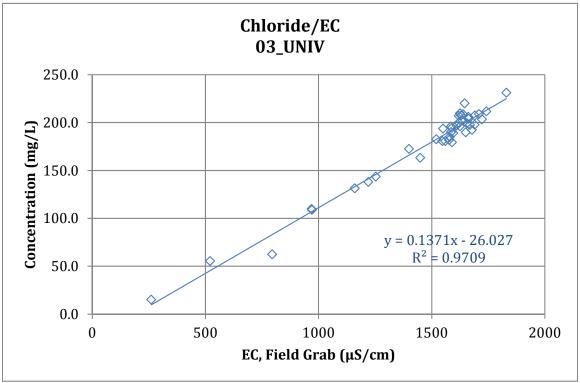
Monthly manual measurements of discharge were performed at all sites, and used to establish base ratings and to determine the required "shifts" ("S" in the equation above) over time for the monitoring year. Base rating curve equations are provided in **Table 1**.

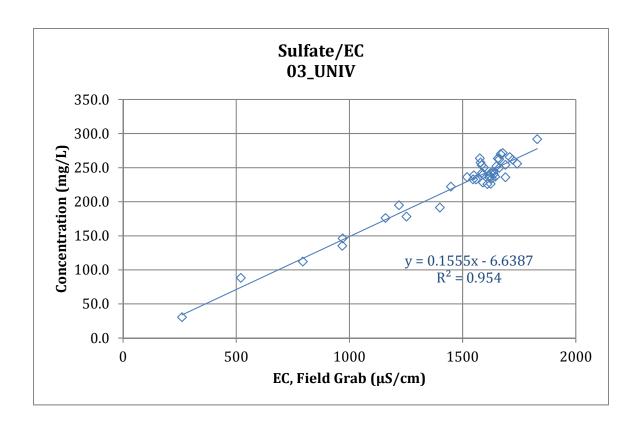
Table 1. Rating Curves for Salts TMDL Compliance Sites for Monitoring Year July 2013-June 2014

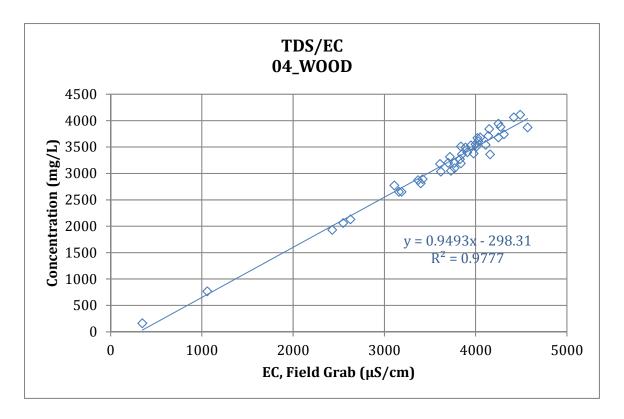
Site	Rating Curve
03 110117	Level < 50 cm: $Q = 0.142*(Lvl - 29.5 + C)^{2.0}$
03_UNIV	Level > 50 cm: $Q = 0.188*(Lvl - 30.0 + C)^{2.1}$
04_WOOD	$Q = 0.0169*(LvI + 4 + C)^{1.65}$
07_TIERRA	$Q = 0.0228*(LvI - 21.5 + C)^{1.9}$
9A_HOWAR	$Q = 0.065*(LvI - 14.0 + C)^{1.9}$
9B_BARON	$Q = 0.1*(LvI - 10 + C)^{1.65}$

EC/SALT RELATIONSHIPS

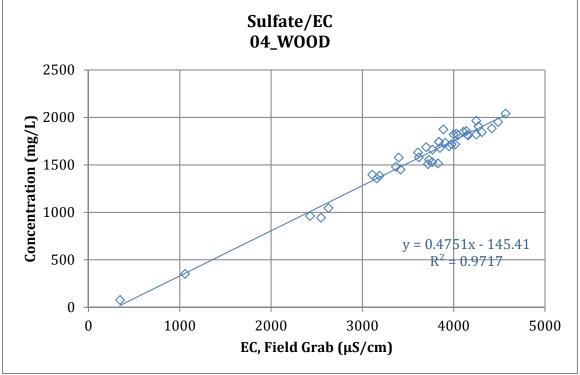

Site-specific, linear relationships between specific conductivity (EC) and salt constituents were used to convert continuous EC sensor data to estimated salt concentrations. Surrogate relationships were derived from field data for EC and salts (grab samples for total dissolved solids (TDS), sulfate, chloride, or boron from quarterly dry plus wet events) using linear regression, in the following form:

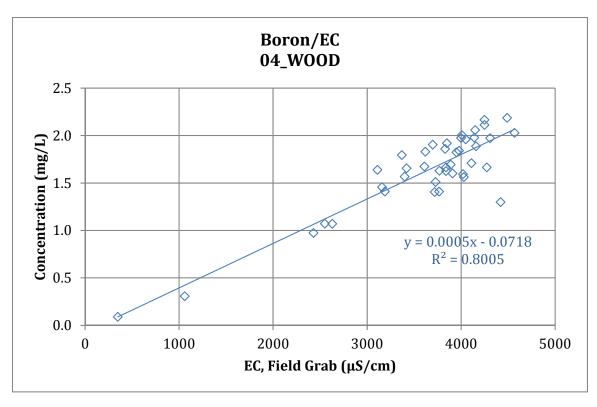

```
[Ion] = A*EC + B, where, [Ion] = concentration of TDS, sulfate, chloride, or boron (mg/L) A = slope EC = specific conductivity (<math>\muS/cm) B = y intercept
```

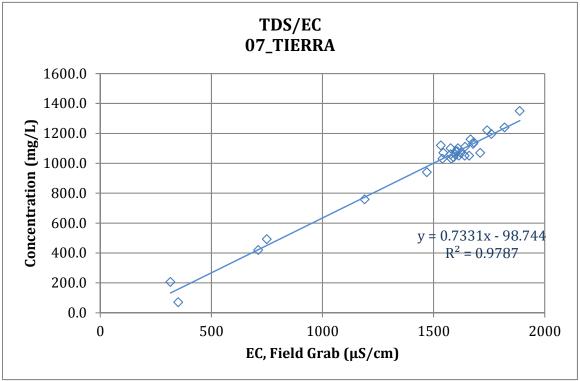

Evaluation of data from July 2012-June 2014 indicated that EC vs. salt relationships at most of the Salts TMDL compliance sites had not significantly changed from those obtained during a one-year pilot study in 2011. Consequently, most surrogate relationships used to convert EC sensor data for monitoring year July 2013-June 2014 to salt concentrations were derived from all available field data between January 2011 and June 2014. However, an analysis of covariance (ANCOVA) indicated that the surrogate relationships for EC-vs.-Chloride and EC-vs.-Sulfate at 9B_BARON had shifted. New surrogate relationships for these two cases were derived using data collected after July 2012, and used to convert EC sensor data for July 2013-June 2014. Parameters for the surrogate relationships are reported in **Table 2**. The surrogate relationships are illustrated in figures following **Table 2**.

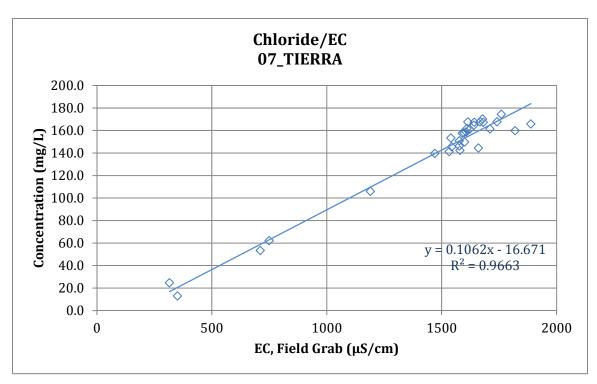

Table 2. Parameters for surrogate relationships used to derive salt concentrations from EC sensor data for monitoring year July 2013-June 2014. Date ranges are for the field data that were used to construct the relationship.

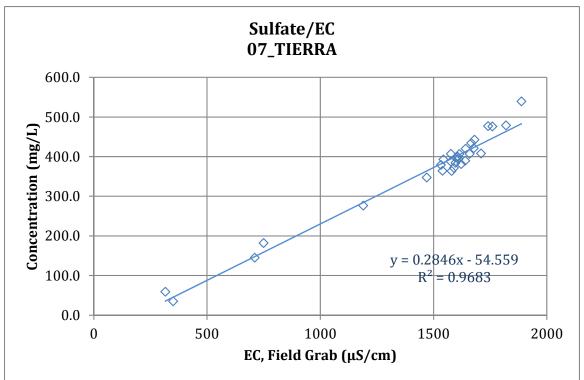
		TDS	CI	SO4	В
03_UNIV	А	0.64372492	0.13714246	0.15545597	
	В	-34.7232	-26.0269	-6.6387	
	R2	0.9762	0.9709	0.9540	
	Count	42	42	42	
	Date Range		1/31/2011 – 5/29/20	14	
04_WOOD	А	0.94933064	0.04578293	0.47514864	0.00046804
	В	-298.3071	-5.4604	-145.4058	-0.0718
	R2	0.9777	0.9273	0.9717	0.8005
	Count	42	41	41	42
	Date Range		1/31/2011 –	5/29/2014	
07_TIERRA	А	0.73313906	0.10622834	0.28464300	0.00044982
	В	-98.7443	-16.6708	-54.5589	-0.0604
	R2	0.9787	0.9663	0.9683	0.9115
	Count	31	31	31	31
	Date Range		1/31/2011 –	5/28/2014	
9A_HOWAR	А	0.62411152	0.13259620	0.15951796	
	В	-20.3903	-15.4805	-11.6112	
	R2	0.9849	0.9604	0.9396	
	Count	32	31	31	
	Date Range		1/31/2011 – 5/28/20	14	
9B_BARON	А	0.62368123	0.15471268	0.12645454	
	В	-32.0803	-23.9806	-0.6176	
	R2	0.9694	0.9811	0.9207	
	Count	32	10	10	
	Date Range	1/31/2011- 5/28/2014	8/29/2012 – 5/28/2014		

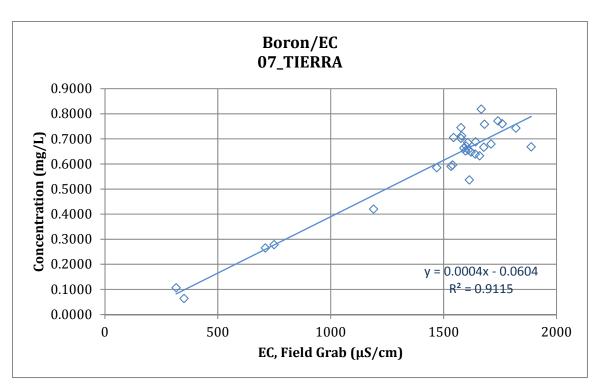


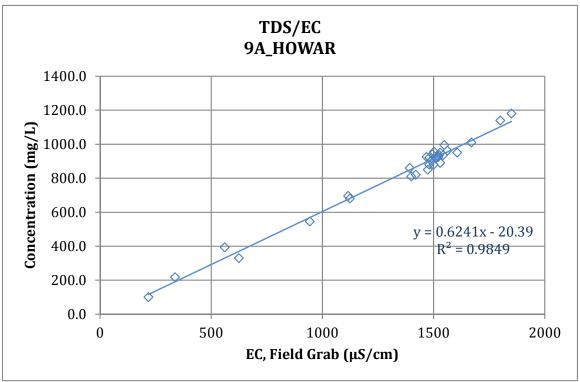


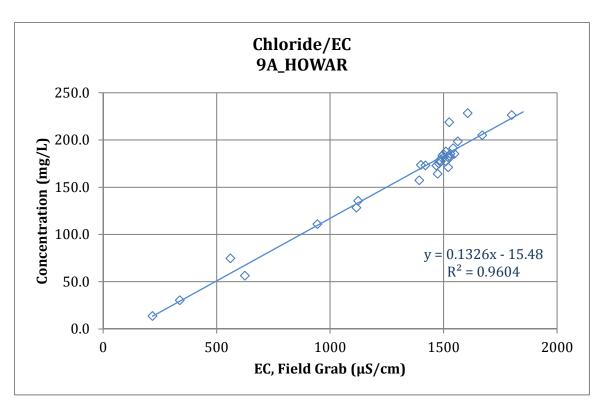


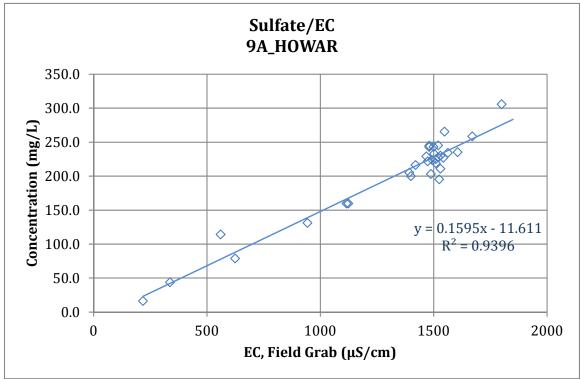


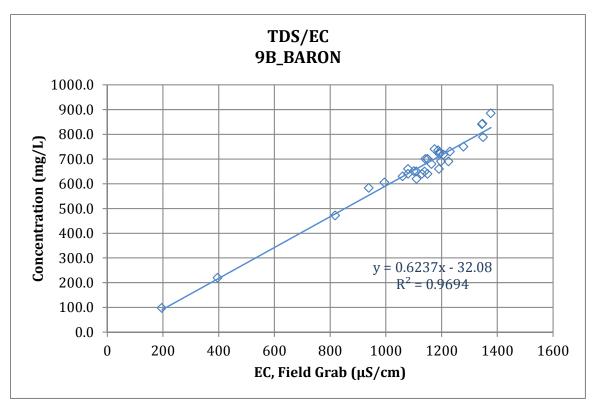


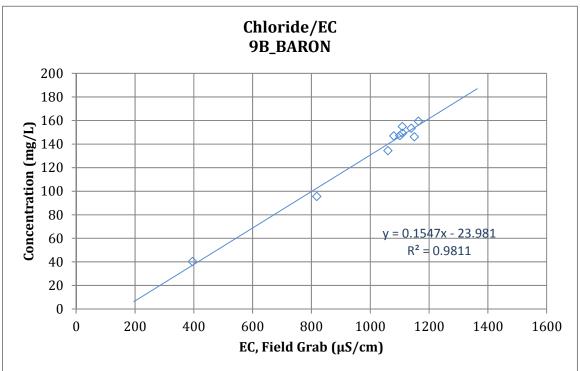


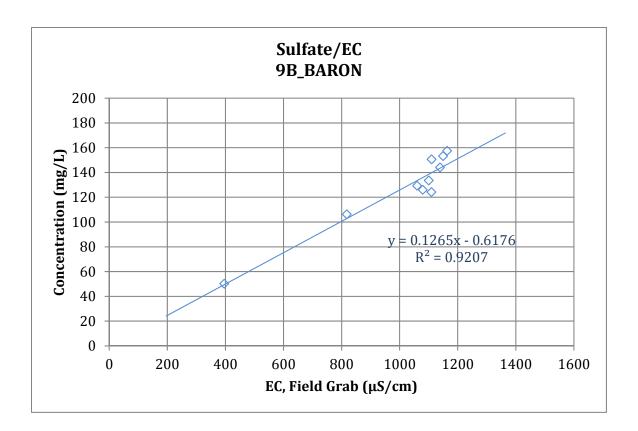












Appendix D:

Toxicity Testing and Toxicity Identification Evaluations (TIE) Summary

TOXICITY TESTING PROCEDURES

For the Creek Watershed TMDL Compliance Monitoring Program (CCWTMP), toxicity testing at various locations is conducted to meet total maximum daily load (TMDL) requirements. The following is a brief summary of the procedures for the analytical methods used by the CCWTMP. Specific details concerning the standard operating procedures (SOPs) followed by field crews collecting applicable samples and laboratory analyses are found in the Quality Assurance Project Plan (QAPP).

For the CCWTMP toxicity measures, standard test species were utilized for toxicity testing. *Ceriodaphnia dubia* was used for fresh water aquatic toxicity testing and *Hyalella azteca* for the saline water aquatic toxicity testing and bulk sediment and porewater toxicity testing. *Hyalella azteca* was used to conduct aquatic toxicity testing if sample salinity exceeded 1.5 part per thousand (PPT) but was less than 15 PPT. All test species are standard United States Environmental Protection Agency (USEPA) test species and considered the most applicable for the various types of pollutants impacting the watershed, and all analytical testing procedures were conducted using standard USEPA methods.

The results of each toxicity test are used to trigger further investigations to determine the cause of observed laboratory toxicity if necessary per the QAPP. If testing indicates the presence of significant toxicity in the sample, toxicity identification evaluations (TIEs) procedures are initiated to investigate the cause of toxicity. For the purpose of triggering TIE procedures, significant toxicity is defined as at least 50% mortality. The 50% mortality threshold is consistent with the approach recommended in guidance published by USEPA for conducting TIEs (USEPA, 1996), which recommends a minimum threshold of 50% mortality because the probability of completing a successful TIE decreases rapidly for samples with less than this level of toxicity. A component of the compliance requirement when significant toxicity is found is to initiate a targeted Phase 1 TIE and test to determine the general class of constituent (*i.e.*, non-polar organics) causing toxicity. The targeted TIE focuses on classes of constituents anticipated to be observed in drainages dominated by urban and agricultural discharges and those previously observed to cause toxicity. Phase 2 TIEs may also be utilized to identify specific constituents causing toxicity if warranted. TIE methods will generally adhere to USEPA procedures documented in conducting TIEs. 2.3,4,5 For samples exhibiting toxic effects consistent with

¹ United States Environmental Protection Agency (USEPA). 1996. Marine Toxicity Identification Evaluation. Phase I Guidance Document EPA/600/R-96/054. USEPA, Office of Research and Development, Washington, D.C.

² United States Environmental Protection Agency (USEPA). 1991. Methods for Aquatic Toxicity Identification Evaluations: Phase 1 Toxicity Characterization Procedures (Second Edition). EPA-600/6-91/003. USEPA, Environmental Research Laboratory, Duluth, MN.

³ United States Environmental Protection Agency (USEPA). 1992. Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents Phase 1. EPA/600/6-91/005. USEPA, Office of Research and Development, Washington, D.C.

carbofuran, diazinon, or chlorpyrifos, TIE procedures follow those documented in Bailey *et al.*⁶ To address toxicity of unknown causes in sediment (> 50% mortality), sediment porewater was extracted and a Phase 1 TIE was performed. In addition, a Phase 1 TIE was performed on bulk sediment.

The decision to initiate TIE procedures on any sample, including samples exceeding the mortality threshold, as well as the focus and scope of TIE procedures, was determined by the Project Manager and toxicity laboratory staff. When deciding whether to initiate TIE procedures for a specific site and monitoring event, a number of factors were considered, including the level of toxicity, the magnitude of sample mortality and/or reburial levels as compared to lab control results, history of toxicity at the site, the species and endpoints exhibiting toxic effects, as well as the primary technical basis for triggering TIEs described above. A summary of the toxicity results and subsequent TIE actions, including the rationale for initiating TIE procedures for a specific sample are described below.

TOXICITY RESULTS SUMMARY

Freshwater sediment toxicity samples are collected annually during the first event of each monitoring year. Water column toxicity samples are collected at freshwater sites during each of the quarterly and wet weather events. Monitored sites include the following:

- Sediment Toxicity (Freshwater Sites)
 - o 04 WOOD
 - o 03_UNIV
- Freshwater Water Column Toxicity
 - o 04 WOOD
 - o 03 UNIV
 - o 9B_ADOLF
 - o 06_SOMIS
 - o 07_HITCH
 - o 10_GATE
 - o 13_BELT

⁴ United States Environmental Protection Agency (USEPA). 1993a. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fourth Edition. EPA/600/4-90/027F. USEPA, Office of Research and Development, Washington, D.C.

⁵ United States Environmental Protection Agency (USEPA). 1993b. Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity. EPA/600/R-02/080. USEPA, Office of Research and Development, Washington, D.C.

⁶ Bailey, H.C., DiGiorgio, C., Kroll, K., Miller, J.L., Hinton, D.E., Starrett, G. 1996. Development of Procedures for Identifying Pesticide Toxicity in Ambient Waters: Carbofuran, Diazinon, Chlorpyrifos. Environ. Tox. and Chem. V15, No. 6, 837-845.

Toxicity samples for sediment were collected at the freshwater sites during dry weather Event 39. Water column toxicity testing was conducted during all four dry weather events (Events 39, 40, 41, and 43), and the one wet weather event (Event 42). The following section describes the toxicity samples collected at each site for each event, the results of the tests, and a summary of applicable TIEs initiated per the requirements in the QAPP.

Event 39 Sediment Toxicity

Table 1. Freshwater Sediment Toxicity Event 39 - Hyalella azteca

Site ID		Toxicity Res	ults
Site ID	Observed Significant Mortality	TIE Initiated	Observed Significant Reduced Growth
04_WOOD	<u>YES</u>	NO ¹	<u>YES</u>
03_UNIV	<u>YES</u>	<u>YES</u> 2	<u>YES</u>

Although the reduction in the survival response at this treatment was statistically significant, there was <50% reduction relative
to the Control and no follow-up testing was performed.

Event 39 Water Column Toxicity

Table 2. Freshwater Water Column Toxicity Event 39 - Ceriodaphnia dubia and Hyalella azteca

	Toxicity Results				
Site ID		Ceriodaphnia dubia			
	Observed Significant Mortality	TIE Initiated	Observed Significant Reduced Reproduction	Observed Significant Mortality	
03_UNIV	NO	NO	YES		
9B_ADOLF	NO	NO	NO		
10_GATE	NO	NO	NO		
13_BELT	NO	NO	NO		
06_SOMIS	NO	NO	YES		
07_HITCH	NO	NO	YES		
04_WOOD				YES	

Event 39 Toxicity and TIE Summary

Freshwater sites exhibited significant mortality in all sediment samples, but toxicity at the 04_WOOD site was not sufficient (mean % survival <50%) for a TIE to be performed. As such, TIEs for sediment porewater and bulk sediment were performed only at the 03_UNIV site. The results of the sediment porewater TIE suggest there are multiple compounds (organics and/or ammonia) contributing to sediment porewater toxicity. The results of the bulk sediment TIE suggest there are multiple compounds contributing to bulk sediment toxicity including non-polar organics and to a lesser extent, metals. However, the bulk sediment TIE results suggest that ammonia is not a cause of bulk sediment toxicity. This may also suggest that ammonia is not a cause of sediment porewater toxicity as the pH of porewater increases as it is removed from the sediment, which increases toxicity (i.e., the increase in pH accounts for the toxicity rather than the ammonia concentration).

Freshwater water column did not exhibit significant reductions to mortality or reproduction at any of the monitoring locations during this event.

^{2.} There was >50% reduction in H. azteca survival; as a result, a TIE targeted for organics was performed.

Event 40 Water Quality Toxicity

Table 3. Water Quality Toxicity Event 40 - Ceriodaphnia dubia and Hyalella azteca

Site ID	Toxicity Results					
		Hyalella azteca				
	Observed Significant Mortality	TIE Initiated	Observed Significant Reduced Reproduction	Observed Significant Mortality		
03_UNIV	NO	NO	NO			
9B_ADOLF	NO	NO	YES			
13_BELT	NO	NO	YES			
06_SOMIS	NO	NO	YES			
07_HITCH	NO	NO	YES			
04_WOOD				NO		

Event 40 Toxicity and TIE Summary

- No significant reductions in survival were observed for either test organism at the six sample sites during the sampling event.
- Significant reductions in reproduction were observed for *Ceriodaphnia dubia* at four of the five sites tested for this organism.
- No TIEs were performed on samples collected for this sampling event.

Event 41 Water Quality Toxicity

Samples were collected at sites: 9B_ADOLF, 03_UNIV, 10_GATE, 06_SOMIS, and 07_HITCH, in addition to 04_WOOD. Successful toxicity testing on event 41 samples was only completed for 04_WOOD. Low conductivity sites testing could not be completed due to a decline in the *C. dubia* laboratory culture.

Table 4. Water Quality Toxicity Event 41 - Ceriodaphnia dubia and Hyalella azteca

Site ID	Toxicity Results					
	Ceriodap	hnia dubia	Hyalella azteca			
	Observed Significant Mortality	Observed Significant Reduced Reproduction	Observed Significant Mortality	TIE		
04_WOOD			NO	NO		

Event 41 Toxicity and TIE Summary

- Significant mortality was not observed for *Hyalella azteca* at 04_WOOD.
- TIEs were not performed on any samples collected during this sampling event.

Event 42 Water Quality Toxicity

Table 5. Water Quality Toxicity Event 42 - Ceriodaphnia dubia

	Toxicity Results					
Site ID	Ceriodaphnia dubia					
	Observed Significant Mortality	Observed Significant Reduced Reproduction	TIE Initiated			
03_UNIV	NO	NO	NO			
9B_ADOLF	NO	NO	NO			
13_BELT	NO	NO	NO			
06_SOMIS	NO	YES	NO			
07_HITCH	NO	NO	NO			
04_WOOD	NO	<u>YES</u>	NO			
10_GATE	NO	<u>YES</u>	NO			

Event 42 Toxicity and TIE Summary

- No significant reductions in survival were observed for *Ceriodaphnia dubia* tests.
- Significant reduced reproduction was observed for the 06_SOMIS, 04_WOOD, and 10_GATE sites.
- A TIE was not performed on any samples collected during the sampling event.

Event 43 Water Quality Toxicity

Table 6. Water Quality Toxicity Event 43 - Ceriodaphnia dubia and Hyalella azteca

Site ID		Toxicity Results				
		Hyalella azteca				
	Observed Significant Mortality	Observed Significant Reduced Reproduction	TIE Initiated	Observed Significant Mortality		
03_UNIV	NO	NO	NO			
9B_ADOLF	NO	NO	NO			
10_GATE	NO	NO	NO			
13_BELT	NO	NO	NO			
07_HITCH	NO	NO	NO			
04_WOOD				NO		

Event 43 Toxicity and TIE Summary

• No significant reductions in survival or reproduction were observed for *Ceriodaphnia dubia* or *Hyalella azteca* for all sites.

Appendix E:

Laboratory QA/QC Results and Discussion

QUALITY ASSURANCE/QUALITY CONTROL

Quality assurance and quality control (QA/QC) measures are built into the CCWTMP to assure that collected data are credible. Two types of quality controls were conducted. Field quality controls (to test for field contamination and precision) were conducted by the field crews and include: equipment blanks, field blanks, and field duplicates and laboratory quality controls (to test for laboratory contamination and precision) were conducted by the labs and include: method blanks, blank spikes, blank spike duplicates, lab duplicates, matrix spikes, matrix spike duplicates, laboratory control samples, and surrogates (organics only). Equipment blanks only apply to the shovels used in sediment sample collection. All field protocols for the collection of clean samples were followed according to the QAPP. The following section lists the quality control failures that occurred during the 2013-2014 monitoring year and any associated qualifiers and comments.

Blank Contamination

During the sixth year of monitoring, a majority of the blank failures were in the metals field blanks. There were very few blank detections for other constituents. There were no equipment blank hits and the lab blank hits were mostly for metals as well. Details of all the blank hits are reported in Table 1 below. The following lists a basic summary of the blank contamination results:

- Field Blanks 1566 analyzed 55 detections above the RL (3.51%) (does not include surrogates)
- Equipment Blanks 121 analyzed 0 detections above RL (0.0%) (does not include lab duplicates or surrogates)
- Laboratory Blanks 4858 analyzed 17 detections above RL (0.35%) (does not include surrogates)

Precision

The purpose of analyzing duplicates is to demonstrate precision of sample collection, preparation, and analytical methods. The relative percent difference (RPD) is reported for field duplicates, lab duplicates, blank spike duplicates, laboratory control spike (LCS) duplicates, and matrix spike duplicates. QA failures for precision are noted when the RPD between a sample and its duplicate are greater than the acceptance value. Details of all the RPD failures are reported in Table 2 below. The following list summarizes the precision analysis results:

- Field Duplicates 2470 analyzed 83 failed RPD (3.36%) (does not include surrogates)
- Laboratory Duplicates 1253 analyzed 44 failed RPD (3.51%) (includes surrogates)
- Blank Spike/LCS Duplicates 4177 analyzed 27 failed RPD (0.65%) (includes surrogates)
- Matrix Spike Duplicates 742 analyzed 17 failed RPD (2.29%) (includes surrogates)

Accuracy

Percent recoveries of blank spike samples (BS), laboratory control spike samples (LCS), and matrix spike samples (MS) check the accuracy of lab reported sample concentrations. For the BS and LCS, a majority of the percent recoveries that fell outside the acceptable range were for pesticides constituents, with more than half occurring in the August event from both sediment and water samples. For the rest of the failed BS, they were scattered across the entire monitoring year. For the matrix spike samples that fell outside the acceptable range, half of them were from the first event of the year in sediment, tissue, and water samples. About a quarter of the samples that fell outside the acceptable range were metals samples, two thirds were from pesticides, and the rest were from the nutrients category. Table 3 summarizes the QA/QC sample results for accuracy that did not meet percent recovery objectives. The following lists the results of the accuracy analysis results:

- Blank Spike/LCS Samples 8231 Analyzed 43 fell outside the range (0.52%) (does not include surrogates)
- Matrix Spike Samples 1470 Analyzed 99 fell outside the range (6.73%) (does not include surrogates)

Table 1. Blank Contamination Observed

		_		Equip	Field	Lab		
Constituent	Matrix	Event	Lab Batch	Blank	Blank	Blank	Program Qualifier	Comments
General Water Quality Dissolved Organic Carbon								
(mg/L)	Water	39	_3082616_W_DOC		0.42			
Total Hardness (calc) (mg/L)	Water	40	Physis E-7036 W		0.2			
Nutrients								
Ammonia as N (mg/L)	Water	40	Physis C-14132 W		0.02		FD RPD	FieldDup RPD failed
OC Pesticieds								
None								
PCBs								
None								
OP Pesticides								
None								
Pyrethroid Pesticides								
Sumithrin (ng/l)	Water	40	W3K0500			4.53		
Metals & Selenium								
Total Chromium (µg/L)	Water	39	Physis E-5134 W		0.01			
Total Chromium (µg/L)	Water	39	Physis E-5137 W		0.0331			
Total Chromium (µg/L)	Water	40	Physis E-7041 W		0.0472		U	Upper Limit due to analyte found in blank
Total Chromium (µg/L)	Water	41	Physis E-7054 W		0.0398		-	
Total Chromium (µg/L)	Water	43	Physis E-7101 W		0.03		FD RPD	FieldDup RPD failed
Dissolved Copper (µg/L)	Water	40	Physis E-7036 W		0.059			
Dissolved Copper (µg/L)	Water	40	Physis E-7041 W		0.018		FD RPD	FieldDup RPD failed
Dissolved Copper (µg/L)	Water	41	W4B0593			0.278		
Dissolved Copper (µg/L)	Water	42	Physis E-7067 W		0.653		U	Upper Limit due to analyte found in blank
Dissolved Copper (ug/l)	Water	40	W3K0917			0.115		

				Equip	Field	Lab		
Constituent	Matrix	Event	Lab Batch	Blank	Blank	Blank	Program Qualifier	Comments
Total Copper (µg/L)	Water	39	Physis E-5134 W		0.051			
Total Copper (µg/L)	Water	40	Physis E-7036 W		0.094			
Total Copper (µg/L)	Water	40	Physis E-7041 W		0.011		U	Upper Limit due to analyte found in blank
Total Copper (µg/L)	Water	41	Physis E-7054 W		0.022			
Total Copper (µg/L)	Water	42	Physis E-7067 W		0.075			
Total Iron (µg/L)	Water	41	Physis E-7054 W		0.7			
Total Iron (µg/L)	Water	43	Physis E-7101 W		1.32		FD RPD	FieldDup RPD failed
Total Iron (µg/L)	Water	43	Physis E-7102 W		0.5			
Dissolved Lead (µg/L)	Water	42	Physis E-7067 W		0.006		LD RPD	LabDup RPD failed
Total Lead (µg/L)	Water	39	Physis E-5137 W		0.0078			
Total Lead (µg/L)	Water	42	Physis E-7067 W		0.071			
Dissolved Manganese (µg/L)	Water	39	Physis E-5134 W		0.096			
Dissolved Manganese (µg/L)	Water	41	Physis E-7061 W		0.012			
Total Manganese (µg/L)	Water	39	Physis E-5134 W		0.01			
Total Manganese (µg/L)	Water	39	Physis E-5137 W		0.04			
Total Manganese (µg/L)	Water	41	Physis E-7054 W		0.02			
Total Manganese (µg/L)	Water	41	Physis E-7061 W		0.033			
Total Manganese (µg/L)	Water	42	Physis E-7067 W		0.03			
Total Manganese (µg/L)	Water	43	Physis E-7102 W		0.02			
Dissolved Mercury (µg/L)	Water	41	W4B0290			0.005		
Dissolved Mercury (µg/L)	Water	42	Physis E-6064 W		0.0008	0.001	U, U	Upper Limit due to analyte found in lab and field blank
Dissolved Mercury (µg/L)	Water	43	W4E0632			0.013		
Total Mercury (µg/L)	Water	42	Physis E-6064 W		0.0008	0.0009	U, U	Upper Limit due to analyte found in lab and field blank
Dissolved Molybdenum (µg/L)	Water	39	Physis E-5134 W		0.19			
Dissolved Molybdenum (µg/L)	Water	39	Physis E-5137 W		0.015			
Dissolved Molybdenum (µg/L)	Water	40	Physis E-7036 W		0.09			

				Equip Fie			_
Constituent	Matrix	Event	Lab Batch	Blank Bla		k Program Qualifier	Comments
Dissolved Molybdenum (μg/L)	Water	41	Physis E-7061 W	0.0			
Dissolved Molybdenum (μg/L)	Water	43	Physis E-7101 W	0	1		
Dissolved Molybdenum (μg/L)	Water	43	Physis E-7102 W	0.0	19		
Total Molybdenum (µg/L)	Water	39	Physis E-5134 W	0.	2		
Total Molybdenum (µg/L)	Water	39	Physis E-5137 W	0.0	12		
Total Molybdenum (µg/L)	Water	40	Physis E-7036 W	0.0)5		
Total Molybdenum (µg/L)	Water	41	Physis E-7061 W	0.0)4		
Total Molybdenum (µg/L)	Water	43	Physis E-7101 W	0.0	9		
Total Molybdenum (µg/L)	Water	43	Physis E-7102 W	0.0	12		
Dissolved Nickel (µg/L)	Water	39	Physis E-5137 W	0.0	06		
Dissolved Nickel (µg/L)	Water	40	Physis E-7041 W	0.0	34		
Dissolved Nickel (µg/L)	Water	41	Physis E-7054 W	0.0	81		
Dissolved Nickel (µg/L)	Water	41	W4B0593		0.166	6	
Dissolved Nickel (µg/L)	Water	43	Physis E-7101 W	0.0)1		
Total Nickel (µg/L)	Water	39	Physis E-5137 W	0.0)57		
Total Nickel (µg/L)	Water	40	Physis E-7041 W	0.0)38	U	Upper Limit due to analyte found in blank
Total Nickel (µg/L)	Water	41	Physis E-7054 W	0.0	37		
Total Nickel (µg/L)	Water	42	Physis E-7067 W	0.0)3		
Total Nickel (µg/L)	Water	43	Physis E-7101 W	0.0)3		
Dissolved Silver (μg/L)	Water	43	Physis E-7101 W	0.)2	MS <ll, est="" ms="" msd,<br="">U</ll,>	MS failed lower limit, Estimate due to MS/MSD RPD failure, Upper Limit due to analyte found in blank
Total Silver (µg/L)	Water	39	Physis E-5137 W	0.)2		
Total Silver (µg/L)	Water	40	Physis E-7041 W	0.)3	U	Upper Limit due to analyte found in blank
Total Silver (µg/L)	Water	43	Physis E-7101 W	0.)4		
Total Silver (µg/L)	Water	43	Physis E-7102 W	0.)3		
Dissolved Strontium (µg/L)	Water	39	Physis E-5134 W	0.	5		

Constituent	Matrix	Event	Lab Batch	Equip Blank	Field Blank	Lab Blank	Program Qualifier	Comments
Total Strontium (µg/L)	Water	39	Physis E-5134 W		0.11			
Total Strontium (μg/L)	Water	43	Physis E-7101 W		0.24			
Total Tin (µg/L)	Water	41	Physis E-7054 W		0.01			
Dissolved Zinc (µg/L)	Water	39	Physis E-5134 W		1.1			
Dissolved Zinc (µg/L)	Water	40	Physis E-7036 W		0.44			
Dissolved Zinc (µg/L)	Water	41	Physis E-7054 W		0.0808			
Dissolved Zinc (µg/L)	Water	41	Physis E-7061 W		1.33			
Dissolved Zinc (µg/L)	Water	41	W4B0593			2.47		
Dissolved Zinc (µg/L)	Water	42	Physis E-7067 W		0.32			
Dissolved Zinc (µg/L)	Water	43	Physis E-7101 W		3.54		FD RPD, U	FieldDup RPD Failed, Upper Limit due to analyte found in blank
Dissolved Zinc (ug/l)	Water	40	W3K0917			2.09	,	
Total Zinc (µg/L)	Water	39	Physis E-5134 W		1.5			
Total Zinc (µg/L)	Water	40	Physis E-7036 W		0.64			
Total Zinc (µg/L)	Water	40	Physis E-7041 W		0.2178		U, FD RPD	FieldDup RPD Failed, Upper Limit due to analyte found in blank
Total Zinc (µg/L)	Water	41	Physis E-7054 W		0.2474		•	
Total Zinc (µg/L)	Water	41	Physis E-7061 W		2.03			
Total Zinc (µg/L)	Water	42	Physis E-7067 W		1.71			
Total Zinc (µg/L)	Water	43	Physis E-7101 W		3.14		U	Upper Limit due to analyte found in blank

Table 2. Precision QA/QC Issues

					BS/	Field	Lab	MS/	D	
Constituent	Matrix	Event	Lab Batch	Site	BSD RPD	Dup RPD	Dup RPD	MSD RPD	Program Qualifier	Comments
General Water										
Quality										
Clay - <0.0039 mm			IIRMES_GC-02-							
(%)	sediment	39	027_S_GS	04_WOOD		33	0			
Sand 0.0625 to <2.0										
mm (%)	Water	42	1011002-096	04D_WOOD			92			
Silt - 0.0039 to			IIRMES_GC-02-							
<0.0625 mm (%)	sediment	39	027_S_GS	04_WOOD		31	13			
Total Suspended			Physis C-13125							
Solids (mg/L)	Water	39	W	04_WOOD		35			FD RPD	FieldDup RPD Failed
Total Suspended			Physis C-13126							
Solids (mg/L)	Water	39	W	07_MADER		67				
Total Suspended			Physis C-15066							
Solids (mg/L)	Water	41	W	01_BPT_3		65			FD RPD	FieldDup RPD Failed
Nutrients										
Ammonia as N			Physis C-14024							
(mg/L)	Water	39	W	LABQA	40					
Ammonia as N			Physis C-14015							
(mg/L)	Water	39	W	04_WOOD				33		
Ammonia as N			Physis C-14132	01T_ODD2_DC						
(mg/L)	Water	40	W	Н		150		25	FD RPD	FieldDup RPD Failed
Ammonia as N			Physis C-15142						MS <ll,< td=""><td>MS failed lower limit,</td></ll,<>	MS failed lower limit,
(mg/L)	Water	41	W	03_UNIV		35			FD RPD	FieldDup RPD Failed
Ammonia as N			Physis C-15142						MS <ll,< td=""><td>MS failed lower limit,</td></ll,<>	MS failed lower limit,
(mg/L)	Water	41	W	10_GATE		35			FD RPD	FieldDup RPD Failed
OrthoPhosphate as P			Physis C-14104	01T_ODD2_DC						
(mg/L)	Water	40	W	Н		197	0	3	FD RPD	FieldDup RPD Failed
Phosphorus, Total as			Physis C-14111							
P (mg/L)	Water	40	W	07_HITCH		3	1	48		
Total Kjeldahl			Associated_QC1 144224_W_CO							
Nitrogen (mg/L)	Water	41	N	03_UNIV		33				
OC Pesticides	-								_	

-					BS/	Field	Lab	MS/	D	
Constituent	Matrix	Event	Lab Batch	Site	BSD RPD	Dup RPD	Dup RPD	MSD RPD	Program Qualifier	Comments
Constituent	Matrix	LVCIIC	Physis O-6002	Oite	IXI D	1(1)	1(1)	1(1)	Qualifici	Comments
DDD(o,p') (µg/L)	Water	42	W	03_UNIV		33			Н	Holdtime exceeded
			Physis O-5017							
DDD(o,p') (ng/dry g)	sediment	39	W	04_WOOD		19	38	1		
			Physis O-5154						H, FD	Holdtime exceeded,
DDD(p,p') (µg/L)	Water	42	W	03_UNIV		35			RPD	FieldDup RPD Failed
			Physis O-6002							
DDD(p,p') (µg/L)	Water	42	W	03_UNIV		39			Н	Holdtime exceeded
			Physis O-5017							
DDD(p,p') (ng/dry g)	sediment	39	W	04_WOOD				32		
			Physis O-5001							
DDD(p,p') (ng/dry g)	sediment	39	W	04_WOOD		49				
			Physis O-5154						H, FD	Holdtime exceeded,
DDE(p,p') (µg/L)	Water	42	W	03_UNIV		31			RPD	FieldDup RPD Failed
DDE(==1) (==/il===)		00	Physis O-5017	04 14/000				00		
DDE(p,p') (ng/dry g)	sediment	39	W	04_WOOD				38		Lab Darella eta DDD
									LD RPD,	LabDuplicate RPD Failed, MS failed upper
									MS >UL,	limit, Estimate due to
			Physis O-5017						EST	RPD failure between
DDE(p,p') (ng/dry g)	sediment	39	W	04_WOOD		2	31		MS/MSD	MS/MSD
<u>υυυ (β,β) (lig,αly g)</u>	ocamioni		Physis O-5001	01_11005					WIG/WIGE	Wichities
DDE(p,p') (ng/dry g)	sediment	39	W	04_WOOD		36			FD RPD	FieldDup RPD Failed
([-,[-], (g,, g]			Physis O-5019							
DDE(p,p') (ng/wet g)	Tissue	39	W	04_WOOD				69		
Total DDE(p,p')			Physis O-5037	_						
(µg/L)	Water	40	W	07_HITCH		<i>57</i>				
			Physis O-5154						H, FD	Holdtime exceeded,
DDT(o,p') (µg/L)	Water	42	W	03_UNIV		137			RPD	FieldDup RPD Failed
			Physis O-5017						MS >UL,	MS failed upper limit,
DDT(o,p') (ng/dry g)	sediment	39	W	04_WOOD		9	38		BS >UL	BS failed upper limit
			Physis O-5017						MS >UL,	MS failed upper limit,
DDT(o,p') (ng/dry g)	sediment	39	W	04_WOOD		32			BS >UL	BS failed upper limit
Total DDT(o,p')			Physis O-5038	01T_ODD2_DC						
_(μg/L)	Water	40	W	Н		48				

					BS/	Field	Lab	MS/	_	
Constituent	Matrix	Event	Lab Batch	Site	BSD RPD	Dup RPD	Dup RPD	MSD RPD	Program Qualifier	Comments
Constituent	Watrix	LVCIIL	Physis O-5017	JILC .	INI D	INI D	INI D	INI D	Quanner	Comments
DDT(p,p') (ng/dry g)	sediment	39	W	04_WOOD				50		
2 2 1 (p,p) (11g, 311) g)			Physis O-5001	0						
DDT(p,p') (ng/dry g)	sediment	39	W	04_WOOD		<i>7</i> 3			BS >UL	BS failed upper limit
			Physis O-5017						EST	Estimate due to
DDT(p,p') (ng/dry g)	sediment	39	W	04_WOOD		53			MS/MSD	MS/MSD RPD failed
Chlordane, alpha-			Physis O-5001							
(ng/dry g)	sediment	39	W	04_WOOD		31				
Chlordane, gamma-			Physis O-5154							
(μg/L)	Water	42	W	03_UNIV		34			H	Holdtime exceeded
Chlordane, gamma-		_	Physis O-5001							
(ng/dry g)	sediment	39	W	04_WOOD		43				
Endosulfan I (ng/wet	107	0.0	Physis O-5019							
g)	Water	39	W 5047	LABQA	36					
Endosulfan II (ng/dry	Water	39	Physis O-5017 W	LABOA	22					
g) Methoxychlor (ng/dry	vvater	39	Physis O-5017	LABQA	33					
g)	sediment	39	W	04_WOOD				42		
Methoxychlor (ng/wet	Sediment	33	Physis O-5019	04_77000				72		
g)	Tissue	39	W	04_WOOD				40		
_ 5/	1.000.0		Physis O-5154	<u> </u>						
Toxaphene (µg/L)	Water	42	W	03_UNIV		140			Н	Holdtime exceeded
PCBs										
			Physis O-5017							
PCB 003 (ng/dry g)	Water	39	W	LABQA	87					
			Physis O-5017							
PCB 008 (ng/dry g)	Water	39	W	LABQA	42					
			Physis O-5154							
PCB 138 (µg/L)	Water	42	W	03_UNIV		47			Н	Holdtime exceeded
DOD 444 (#)	147	40	Physis O-5154	00 1 10 10 7						
PCB 141 (µg/L)	Water	42	W 5454	03_UNIV		46			H	Holdtime exceeded
DCD 454 (/L)	Motor	40	Physis O-5154	00 11011/		5 0				
PCB 151 (µg/L)	Water	42	W Physis O-5154	03_UNIV		52			Н	Holdtime exceeded
PCB 153 (µg/L)	Water	42	W	03_UNIV		62			Н	Holdtime exceeded
1 OD 100 (μg/L)	vvaloi	74	v V	UU_UINIV		UZ.				i iolatimo exceeded

				BS/	Field	Lab	MS/	D	
Matrix	Event	Lah Batch	Site						Comments
Watrix	LVCIIL		Oile	IXI D	INI D	INI D	INI D		Holdtime exceeded,
Water	42	W	03 UNIV		134				FieldDup RPD Failed
		Physis O-5154						H, FD	Holdtime exceeded,
Water	42	W	03_UNIV		195			RPD	FieldDup RPD Failed
		Physis O-5017							
sediment	39	W	04_WOOD				31		
Water	41	W4B0333	LABQA				26		
								FST	Estimate due to
Water	39	W3H0542	LabQA	28				_	BS/BSD RPD failed
									Holdtime exceeded,
Water	42	W	03_UNIV		156			RPD	FieldDup RPD Failed
		Physis O-5017							·
sediment	39	W	04_WOOD		32	8		MS >UL	MS failed upper limit
		•							
sediment	39	W	04_WOOD		61			MS >UL	MS failed upper limit
		Physis O-6002						FST	Estimate due to
Water	42	W	LABQA	32					BS/BSD RPD failed
		Physis O-5101	·					H, FD	Holdtime exceeded,
Water	41	W	03_UNIV		<i>77</i>			RPD	FieldDup RPD Failed
		Physis O-5001							
Water	39	W	LABQA	37					
Water	41	W4B0333	LABQA	35					
Water	41	W4B0333	LABQA				36		
		Physis 0-6002						FST	Estimate due to
Water	42	W	LABQA	44					BS/BSD RPD failed
				77					
144		14/01/10=40							Estimate due to
Water	39	W3H0542	LabQA	32				BS/BSD	BS/BSD RPD failed
		Physis O-5107						EST	Estimate due to
Water	41	W	LABQA	41				BS/BSD	BS/BSD RPD failed
	water Water Water sediment sediment Water	Water 42 Water 42 sediment 39 Water 42 sediment 39 sediment 39 water 42 Water 41 Water 41 Water 41 Water 41 Water 41 Water 43 Water 41 Water 43 Water 43 Water 43 Water 43	Physis O-5154 Water 42 W Physis O-5154 Water 42 W Physis O-5017 Sediment 39 W3H0542 Physis O-5017 Sediment 39 W Physis O-5017 Sediment 39 W Physis O-5017 Sediment 39 W Physis O-6002 Water 42 W Physis O-5101 Water 41 W Physis O-5001 Water 41 W Physis O-5001 Water 41 W4B0333 Water 41 W4B0333 Physis O-6002 Water 42 W Water 42 W Water 42 W Water 43 Water 44 W4B0333 Physis O-6002 Water 42 W Water 42 W Water 43 Water 44 W4B0333 Physis O-6002 Water 42 W Water 42 W Water 43 Water 44 W4B0333 Physis O-6002 Water 42 W Water 42 Physis O-5107	Water 42 W 03_UNIV Physis O-5154 W 03_UNIV Physis O-5017 Physis O-5017 sediment 39 W 04_WOOD Water 41 W4B0333 LABQA Water 39 W3H0542 LabQA Physis O-5154 Water 42 W 03_UNIV Physis O-5017 Physis O-5017 04_WOOD 04_WOOD Physis O-6002 Water 42 W LABQA Water 41 W 03_UNIV Physis O-5001 Water 41 W 03_UNIV Water 41 W 03_UNIV 04_WOOD Water 42 W LABQA LABQA Water 41 W4B0333 LABQA LABQA Water 41 W4B0333 LABQA LABQA Water 42 W LABQA LABQA Water 42 W LABQA LABQA	Matrix Event Lab Batch Site RPD Water 42 W 03_UNIV Physis O-5154 W 03_UNIV Water 42 W 03_UNIV Physis O-5017 04_WOOD Physis O-5017 Water 41 W4B0333 LABQA Water 42 W 03_UNIV Physis O-5154 W 03_UNIV Physis O-5017 Physis O-5017 Sediment 39 W Sediment 39 W 04_WOOD Physis O-5017 Sediment 39 W LABQA 32 Water 42 W LABQA 32 Water 41 W 03_UNIV 03_UNIV Physis O-5001 Water 41 W4B0333 LABQA 37 Water 41 W4B0333 LABQA 35 Water 41 W4B0333 LABQA 44 Water 42 W LABQA	Matrix Event Lab Batch Site RPD RPD Water 42 W 03_UNIV 134 Physis O-5154 Water 42 W 03_UNIV 195 Sediment 39 W 04_WOOD	Matrix Event Lab Batch Site BSD RPD Dup RPD Dup RPD Water 42 W 03 UNIV 134	Matrix Event Lab Batch Site BSD RPD Dup RPD MSD RPD Water 42 W 03_UNIV 134 Water 42 W 03_UNIV 195 Sediment 39 W 04_WOOD 31 Water 41 W4B0333 LABQA 28 Water 39 W3H0542 LabQA 28 Water 42 Physis O-5154 W 03_UNIV 156 sediment 39 W 04_WOOD 32 8 sediment 39 W 04_WOOD 32 8 sediment 39 W 04_WOOD 61 9 water 42 W 04_WOOD 61 9 Water 42 W 03_UNIV 77 9 Water 41 W 03_UNIV 77 9 Water 41 W4B0333 LABQA 37 36 Wat	Matrix Event Lab Batch Physis O-5154 Site RPD BSD RPD RPD RPD RPD RPD MSD RPD RPD RPD RPD MSD RPD Qualifier RPD Qualifier Water 42 W 03_UNIV 134 - RPD H, FD RPD Water 42 W 03_UNIV 195 - H, FD RPD sediment 39 Physis O-5017 Physis O-5017 04_WOOD 31 26 Water 41 W4B0333 LABQA 28 - EST BS/BSD Water 39 W3H0542 LabQA 28 - BS/BSD Water 42 W 03_UNIV 156 - RPD Water 42 W 03_UNIV 156 - RPD sediment 39 W 04_WOOD 32 8 MS >UL sediment 39 W 04_WOOD 61 MS >UL Water 42 W 03_UNIV 77 - RPD Water 41 WAB0333

					BS/ BSD	Field Dup	Lab Dup	MS/ MSD	Drogram	
Constituent	Matrix	Event	Lab Batch	Site	RPD	RPD	RPD	RPD	Program Qualifier	Comments
Total Malathion			Physis O-5134						H, FD	Holdtime exceeded,
(µg/L)	Water	42	W	03_UNIV		66			RPD	FieldDup RPD Failed
Total Malathion			Physis O-5134						H, FD	Holdtime exceeded,
(µg/L)	Water	42	W	13_SB_HILL		103			RPD	FieldDup RPD Failed
Naled (µg/L)	Water	43	W4E0626	LABQA	39					
Total										
Tetrachlorvinphos			Physis O-5092						EST	Estimate due to
(µg/L)	Water	41	W	LABQA	34				BS/BSD	BS/BSD RPD failed
Pyrethroid Pesticides										
			Physis O-6002						H, FD	Holdtime exceeded,
Bifenthrin (µg/L)	Water	42	W	13_SB_HILL		38			RPD	FieldDup RPD Failed
										LabDuplicate RPD
			Physis O-5017						LD RPD,	Failed, MS failed upper
Bifenthrin (ng/dry g)	sediment	39	W	04_WOOD		11	54		MS >UL	limit
			Physis O-6030							
Total Bifenthrin (µg/L)	Water	43	W	07_HITCH		197			FD RPD	FieldDup RPD Failed
0 (1 11 : 1 / . // . //	107	40	Physis O-5154	00 111111111111111111111111111111111111					H, FD	Holdtime exceeded,
Cyfluthrin, total (µg/L)	Water	42	W	03_UNIV		60			RPD	FieldDup RPD Failed
Outlintaries total (mail)	10/0400	40	Physis O-6002	00 11011/		400			H, FD	Holdtime exceeded,
Cyfluthrin, total (µg/L)	Water	42	W COOO	03_UNIV		106			RPD	FieldDup RPD Failed
Coefficient total (coeff)	10/040#	40	Physis O-6002	40 CD LIILL		22			H, FD	Holdtime exceeded,
Cyfluthrin, total (µg/L) Cyfluthrin, total	Water	42	W Physis O-5017	13_SB_HILL		33			RPD	FieldDup RPD Failed
(ng/dry g)	sediment	39	W	04_WOOD				74		
Cypermethrin, total	Sediment	33	Physis O-5154	04_77000				/4	H, FD	Holdtime exceeded,
(μg/L)	Water	42	W	03_UNIV		56			RPD	FieldDup RPD Failed
Cypermethrin, total	vvator	72	Physis O-6002	00_01117					THE D	Tieldbap IXI b Talled
(μg/L)	Water	42	W	13_SB_HILL		46			Н	Holdtime exceeded
Cypermethrin, total			Physis O-5001							
(ng/dry g)	sediment	39	W	04_WOOD		33				
<u>, , , , , , , , , , , , , , , , , , , </u>										LabDuplicate RPD
			Physis O-5017						LD RPD,	Failed, MS failed upper
Danitol (ng/dry g)	sediment	39	W	04_WOOD		2	36		MS >UL	limit
			Physis O-5001							
Danitol (ng/dry g)	sediment	39	W	04_WOOD		60			FD RPD	FieldDup RPD Failed

					BS/	Field	Lab	MS/	D	
Constituent	Matrix	Event	Lab Batch	Site	BSD RPD	Dup RPD	Dup RPD	MSD RPD	Program Qualifier	Comments
Constituent	Matrix	Event	Physis O-5154	Site	KFD	KFU	KFU	KFU	H, FD	Holdtime exceeded,
Esfenvalerate (µg/L)	Water	42	W	03 UNIV		49			RPD	FieldDup RPD Failed
Total Esfenvalerate	vvator	72	Physis O-5038	01T_ODD2_DC		73			INI D	Ticiabapiti biranca
(µg/L)	Water	40	W	H		95				
(μg/ μ)	vvator		Physis O-5154			- 30				
Fenvalerate (µg/L)	Water	42	W	03 UNIV		50			Н	Holdtime exceeded
Total Fenvalerate	Trator	<u> </u>	Physis O-5038	01T_ODD2_DC						тючино одообиои
(µg/L)	Water	40	W	H		46				
Total Fluvalinate	Trator		Physis O-5038	01T_ODD2_DC						
(µg/L)	Water	40	W	H		123				
Total L-Cyhalothrin			Physis O-4151							
(µg/L)	Water	39	W	04 WOOD		45				
•										
Total Prallethrin			Physis O-5107						EST	Estimate due to
(µg/L)	Water	41	W	LABQA	45				BS/BSD	BS/BSD RPD failed
			- -						BS <ll,< td=""><td>BS failed lower limit,</td></ll,<>	BS failed lower limit,
Total Prallethrin	147	4.0	Physis O-6002						EST	Estimate due to
(µg/L)	Water	42	W	LABQA	107				BS/BSD	BS/BSD RPD failed
Metals and										
Selenium			DI : 5 -101	0.1T 0.DD0 D0						
Dissolved Aluminum	14/-1	40	Physis E-7101	01T_ODD2_DC		407	0	•		ELUD - DDD E-T-I
(µg/L)	Water	43	W	H		107	0	0	FD RPD	FieldDup RPD Failed
A1		00	Physis E-5149	1.450.4			50			
Aluminum (µg/dry g)	sediment	39	W F 7054	LABQA			59			
Total Aluminum	10/-4	44	Physis E-7054	04 DDT 0		20				FieldDown DDD Feiled
(µg/L)	Water	41	W 5 7404	01_BPT_3		32			FD RPD	FieldDup RPD Failed
Total Aluminum	\\/ata#	40	Physis E-7101	01T_ODD2_DC		400	-			FieldDus DDD Feiled
(µg/L)	Water	43	W Dhysia F 7044	Н		120	5		FD RPD	FieldDup RPD Failed
Dissolved Beryllium	\\/ata#	40	Physis E-7041	04 DDT 44			50			
(µg/L)	Water	40	W Dhysis F 7007	01_BPT_14			50			
Dissolved Beryllium	Water	42	Physis E-7067 W	03_UNIV		67				
(µg/L)	vvalei	42	Physis E-7041	U3_UINIV		0/				Upper Limit due to
Total Barullium (ug/L)	Water	40	W	01_BPT_15		35			U	analyte found in blank
Total Beryllium (µg/L)	vvalei	40	Physis E-7054	01_001_10		33			U	analyte lound in blank
Total Beryllium (µg/L)	Water	41	W	01_BPT_14			33			
Total beryllium (µg/L)	vvalti	41	v v	V1_DF1_14						

					BS/ BSD	Field	Lab	MS/ MSD	Dragram	
Constituent	Matrix	Event	Lab Batch	Site	RPD	Dup RPD	Dup RPD	RPD	Program Qualifier	Comments
Dissolved Cadmium			Physis E-7036	05D_SANT_VC						LabDuplicate RPD
(µg/L)	Water	40	W	WPD			113		LD RPD	Failed
Dissolved Cadmium			Physis E-7036							LabDuplicate RPD
(µg/L)	Water	40	W	07D_SIMI			53		LD RPD	Failed .
Dissolved Cadmium			Physis E-7052							LabDuplicate RPD
(µg/L)	Water	41	W	9AD_CAMA			41	0	LD RPD	Failed ·
Dissolved Cadmium			Physis E-7101							
(µg/L)	Water	43	W	9AD_CAMA			34	0		
Total Cadmium			Physis M-5133							LabDuplicate RPD
_(µg/L)	Water	39	W	07D_SIMI			50		LD RPD	Failed
Total Cadmium			Physis E-7036							
(µg/L)	Water	40	W	9AD_CAMA			82			
Total Cadmium			Physis E-7061							
_(µg/L)	Water	41	W	03_UNIV		33			FD RPD	FieldDup RPD Failed
Dissolved Chromium			Physis E-7067							
(µg/L)	Water	42	W	03_UNIV		50			FD RPD	FieldDup RPD Failed
Total Chromium			Physis E-7101	01T_ODD2_DC						
(µg/L)	Water	43	W	Н		34	13		FD RPD	FieldDup RPD Failed
										LabDuplicate RPD
										Failed, Upper Limit due
									LD RPD,	to analyte found in
Dissolved Copper			Physis E-7041						U, FD	blank, FieldDuplicate
(µg/L)	Water	40	W	01_BPT_14			88		RPD	RPD Failed
										LabDuplicate RPD
Dissolved Copper	101	4.0	Physis E-7041	04 DDT 45					LD RPD,	Failed, FieldDuplicate
(µg/L)	Water	40	W	01_BPT_15		43			FD RPD	RPD Failed
Dissolved Copper	101	4.4	Physis E-7054	04 BBT 0					ED DDD	E: 110 DDD E :: 1
(µg/L)	Water	41	W	01_BPT_3		80			FD RPD	FieldDup RPD Failed
Dissolved Copper	10/-1	40	Physis E-7102	04 DDT 44					LD DDD	LabDuplicate RPD
(µg/L)	Water	43	W 5 7404	01_BPT_14			67		LD RPD	Failed
Total Iron /·····//	10/645	40	Physis E-7101	01T_ODD2_DC		4	_		ED DDD	FieldDow DDD Felled
Total Iron (µg/L)	Water	43	W Dhysia F 5424	H ODDA DO		47	5		FD RPD	FieldDup RPD Failed
Dissolved Lead	\ <i>\\</i> ata=	20	Physis E-5134	01T_ODD2_DC			44	^		
(µg/L)	Water	39	W Dhysis F 5127	Н			44	0		LabDuplicata DDD
Dissolved Lead	Water	39	Physis E-5137 W	01 DDT 14		12	68		LD RPD	LabDuplicate RPD Failed
(µg/L)	vvalei	39	V V	01_BPT_14		12	Øδ		בט גדט	raileu

					BS/ BSD	Field Dup	Lab Dup	MS/ MSD	Program	
Constituent	Matrix	Event	Lab Batch	Site	RPD	RPD	RPD	RPD	Qualifier	Comments
Dissolved Lead			Physis E-7041							
(µg/L)	Water	40	W	01_BPT_15		45				
Dissolved Lead			Physis E-7067							LabDuplicate RPD
_(µg/L)	Water	42	W	01_RR_BR			88	2	LD RPD	Failed
Dissolved Lead			Physis E-7101							LabDuplicate RPD
(µg/L)	Water	43	W	03_UNIV			37	0	LD RPD	Failed
			Physis E-7036							LabDuplicate RPD
Total Lead (µg/L)	Water	40	W	9AD_CAMA			43		LD RPD	Failed
			Physis E-7054							
Total Lead (µg/L)	Water	41	W	01_BPT_3		39			FD RPD	FieldDup RPD Failed
			DI : E 7404	047 0000 00						LabDuplicate RPD
T-1-111/ -/1>	10/-1	40	Physis E-7101	01T_ODD2_DC		450	40		LD RPD,	Failed, FieldDuplicate
Total Lead (µg/L)	Water	43	W	Н		158	19		FD RPD	RPD Failed
			Dhysis E 7404							LabDuplicate RPD
Total Load (ug/L)	Water	43	Physis E-7101 W	07D_SIMI			73		LD RPD, FD RPD	Failed, FieldDuplicate RPD Failed
Total Lead (µg/L) Dissolved	water	43	Physis E-7067	U/D_SIIVII			/3		FURFU	RPD Falled
Manganese (µg/L)	Water	42	W	03 UNIV		97			FD RPD	FieldDup RPD Failed
Total Manganese	vvater	72	Physis E-7101	03_011V 01T_ODD2_DC		31			TUNIU	TieldDdp IXI D Falled
(µg/L)	Water	43	W	H		41	1		FD RPD	FieldDup RPD Failed
Dissolved Mercury	vvator	10	Physis E-6069	- ' '			<u> </u>		1010	1 lold Dap 1 (1 D 1 dillod
(µg/L)	Water	43	W	01_BPT_14			60			
Dissolved Mercury			Physis E-6069							
(µg/L)	Water	43	W	01_BPT_6		35				
			Physis E-6046							
Total Mercury (µg/L)	Water	40	W	01_BPT_14			33			
			Physis E-6048							
Total Mercury (µg/L)	Water	40	W	03_UNIV			33	3		
Dissolved Selenium			Physis E-7036							
(µg/L)	Water	40	W	9AD_CAMA			44	0		
Dissolved Selenium			Physis E-7041							
(µg/L)	Water	40	W	01_BPT_14			50			
Dissolved Selenium	147	4.4	Physis E-7052	0.15.0.111						
(µg/L)	Water	41	W	9AD_CAMA			40	1		
Dissolved Selenium	147 -	40	Physis E-7102	04 DDT 44						
(µg/L)	Water	43	W	01_BPT_14			33			

					BS/	Field	Lab	MS/		
		_			BSD	Dup	Dup	MSD	Program	
Constituent	Matrix	Event	Lab Batch	Site	RPD	RPD	RPD	RPD	Qualifier	Comments
Tatal Calaminus (v.m/l.)	10/-4	44	Physis E-7054	04 DDT 44			47			
Total Selenium (µg/L)	Water	41	W Physis E-7054	01_BPT_14			47			
Total Selenium (µg/L)	Water	41	W	01_BPT_3		55				
Total Seleman (µg/L)	vvalei	41	Physis E-7067	01_011_3		<u> </u>				LabDuplicate RPD
Total Selenium (µg/L)	Water	42	W	01_RR_BR			42		LD RPD	Failed
Dissolved Silver			Physis E-5137							
(µg/L)	Water	39	W	01_BPT_14		29	50			
										MS failed lower limit,
										Estimate due to RPD
									MS <ll,< td=""><td>failure between</td></ll,<>	failure between
Diagolas de Oilean			Dh						EST MC/MCD	MS/MSD, Upper Limit
Dissolved Silver	Water	43	Physis E-7101 W	03_UNIV			67		MS/MSD, U	due to analyte found in blank
_(µg/L)	vvalei	43	VV	US_UNIV			07		U	MS failed lower limit,
									MS <ll,< td=""><td>Estimate due to RPD</td></ll,<>	Estimate due to RPD
Dissolved Silver			Physis E-7101						EST	failure between
(µg/L)	Water	43	W	07D_SIMI				31	MS/MSD	MS/MSD
										MS failed lower limit,
									MS <ll,< td=""><td>Estimate due to RPD</td></ll,<>	Estimate due to RPD
Dissolved Silver			Physis E-7101				_		EST	failure between
(µg/L)	Water	43	W	9AD_CAMA			0	45	MS/MSD	MS/MSD
Discolation Oil so			DL -'- E 7400						FD RPD,	FieldDup RPD Failed,
Dissolved Silver	Water	43	Physis E-7102 W	01_BPT_6		40			EST MS/MSD	Estimate due to MS/MSD RPD failed
_(μg/L)	vvalei	43	Physis E-5149	UI_DFI_0		40			IVIO/IVIOD	WIS/IVISD RFD falled
Silver (µg/dry g)	sediment	39	W	04_WOOD		0	40			
<u> </u>			Physis E-7041	0						Upper Limit due to
Total Silver (µg/L)	Water	40	W	01_BPT_15		67			U	analyte found in blank
			Physis E-7054							-
Total Silver (µg/L)	Water	41	W	01_BPT_14			67			
			Physis E-7054							
Total Silver (µg/L)	Water	41	W	01_BPT_3		40				
									MO	MS failed upper limit,
Dissolved Strontium			Physis E-7036	01T_ODD2_DC					MS >UL, EST	Estimate due to RPD failure between
(µg/L)	Water	40	W	011_0002_0C H		1	0	74	MS/MSD	MS/MSD
(P9/ <i>L)</i>	vvalei	+∪	VV	11		<u> </u>	U	/4	IVIO/IVIOD	עטואויטואו

					BS/ BSD	Field Dup	Lab Dup	MS/ MSD	Program	
Constituent	Matrix	Event	Lab Batch	Site	RPD	RPD	RPD	RPD	Qualifier	Comments
Dissolved Strontium			Physis E-7036	05D_SANT_VC					MS >UL, EST	MS failed upper limit, Estimate due to RPD failure between
(µg/L)	Water	40	W	WPD			2	32	MS/MSD	MS/MSD
Dissolved Thallium			Physis E-7041							
(µg/L)	Water	40	W	01_BPT_14			46			
Dissolved Thallium			Physis E-7052							
(µg/L)	Water	41	W	9AD_CAMA			40	0		
Total Thallium (µg/L)	Water	39	Physis E-5134 W	04_WOOD		67				
Total Thallium (µg/L)	Water	40	Physis E-7041 W	01_BPT_14			48			
Total Thallium (µg/L)	Water	41	Physis E-7052 W	07D_SIMI			100			_
Total Thallium (µg/L)	Water	41	Physis E-7052 W Physis E-5137	9AD_CAMA			40			
Dissolved Tin (µg/L)	Water	39	W	01_BPT_14		105	18		FD RPD	FieldDup RPD Failed
Total Tin (µg/L)	Water	39	Physis E-5137 W	01_BPT_14		78	5		FD RPD	FieldDup RPD Failed
Total Tin (µg/L)	Water	40	Physis E-7041 W	01_BPT_15		120			FD RPD	FieldDup RPD Failed
Total Tin (µg/L)	Water	41	Physis E-7052 W	9AD_CAMA			40			
Total Tin (µg/L)	Water	42	Physis E-7067 W	01_RR_BR			71			
Total Tin (µg/L)	Water	42	Physis E-7067 W	03_UNIV		42				
Total Tin (µg/L)	Water	43	Physis E-7102 W	01_BPT_14			31			
Dissolved Titanium (μg/L)	Water	40	Physis E-7036 W	01T_ODD2_DC H		1	0	62	MS <ll, EST MS/MSD</ll, 	MS failed lower limit, Estimate due to RPD failure between MS/MSD
Dissolved Zinc (μg/L)	Water	40	Physis E-7041 W	01_BPT_15		36			FD RPD	FieldDup RPD Failed

Constituent	Matrix	Event	Lab Batch	Site	BS/ BSD RPD	Field Dup RPD	Lab Dup RPD	MS/ MSD RPD	Program Qualifier	Comments
Dissolved Zinc (μg/L)	Water	43	Physis E-7101 W	01T_ODD2_DC H		44	1		FD RPD, U	FieldDup RPD Failed, Upper Limit due to analyte found in blank
Dissolved Zinc (μg/L)	Water	43	Physis E-7102 W	01_BPT_6		45			FD RPD	FieldDup RPD Failed
Total Zinc (µg/L)	Water	40	Physis E-7041 W	01_BPT_15		62			FD RPD	FieldDup RPD Failed

BS/BSD = Blank Spike/Blank Spike Duplicate
MS/MSD = Matrix Spike/Matrix Spike Duplicate
RPD = Relative Percent Difference

Table 3. Accuracy QA/QC Issues

_		_				LCS	LCSD	MS	MSD	Program	_
Constituent General Water	Matrix	Event	Lab Batch	LCL	UCL	%Rec.	%Rec.	%Rec.	%Rec.	Qualifier	Comments
Quality											
None											
Nutrients											
Ammonia as N (mg/L)	Water	41	Physis C-15142 W	70	130	88	92	72	68	MS <ll, fd<br="">RPD</ll,>	MS failed lower limit, FieldDup RPD failed
Ammonia as N (mg/L)	Water	43	Physis C-18017 W	70	130	120	112	192		MS >UL	MS failed upper limit
Ammonia as N (mg/L)	Water	43	Physis C-18019 W	70	130	116	100	416	380	MS >UL	MS failed upper limit
Nitrite as N (mg/L)	Water	40	Physis C-14104 W	70	130	100	93	67	73	MS <ll< td=""><td>MS failed upper limit</td></ll<>	MS failed upper limit
Nitrite as N (mg/L)	Water	42	Physis C-15152 W	70	130	100	93	0	0	MS <ll< td=""><td>MS failed upper limit</td></ll<>	MS failed upper limit
Nitrite as N (mg/L)	Water	43	Physis C-21029 W	70	130	93	93	40	40	MS <ll< td=""><td>MS failed upper limit</td></ll<>	MS failed upper limit
OrthoPhosphate as P (mg/L)	Water	41	Physis C-15093 W	70	130	114	112	65	68	MS <ll< td=""><td>MS failed upper limit</td></ll<>	MS failed upper limit
OC Pesticides											
Aldrin (ng/dry g)	Sediment	39	Physis O-5017 W	50	150	96	97	20	26		
DDE(p,p') (ng/dry g)	Sediment	39	Physis O-5017 W	50	150	104	113	151	103		
DDE(p,p') (ng/wet g)	Tissue	39	Physis O-5019 W	50	150	86	85	1149	558		
DDT(o,p') (ng/dry g)	Sediment	39	Physis O-5017 W	25	125	129	124	112	129		
DDT(p,p') (ng/dry g)	Water	39	Physis O-5001 W	25	125	116	134	Х	Χ		
Endosulfan I (ng/dry g)	Sediment	39	Physis O-5017 W	50	150	107	121	41	55		
Endosulfan I (ng/wet g)	Tissue	39	Physis O-5019 W	50	150	36	52	87	67		

						LCS	LCSD	MS	MSD	Program	
Constituent	Matrix	Event	Lab Batch	LCL	UCL	%Rec.	%Rec.	%Rec.	%Rec.	Qualifier	Comments
			Physis O-5001								
Endrin (ng/dry g)	Water	39	W	25	125	112	131	X	X		
			Physis O-5001		40-		404				
Endrin (ng/dry g)	Water	39	W	25	125	112	131	Х	Х		
Heptachlor (ng/dry g)	Water	39	Physis O-5001 W	50	150	150	153	Х	X		
Tieptachiol (fig/dry g)	vvalei	39	Physis O-5001	50	150	150	153		^		
Heptachlor (ng/dry g)	Water	39	W	50	150	150	153	Х	Χ		
Hexachlorobenzene	· · · · · ·		Physis O-5019			100					
(ng/wet g)	Tissue	39	W	50	150	72	84	175	217		
Methoxychlor (ng/wet			Physis O-5019								
g)	Tissue	39	W	50	150	68	69	33	22		
			Physis O-5107								
Total Endrin (µg/L)	Water	41	W	25	125	129	121	X	X		
Tatal Davids and (av/l)	VA/- (4.4	Physis O-5092	50	450	45	5 4	V	V	DO 11	DO falls III. and land
Total Perthane (µg/L)	Water	41	W	50	150	45	51	X	X	BS <ll< td=""><td>BS failed lower limit</td></ll<>	BS failed lower limit
PCBs											
DOD 000 (//)	.		Physis O-5017		4=0		0.4	40-	400		
PCB 003 (ng/dry g)	Sediment	39	W	50	150	32	81	107	100		
PCB 018 (ng/wet g)	Tissue	39	Physis O-5019 W	50	150	84	90	154	152		
Total PCB 168/132	Hissue	39	Physis O-6022	50	150	04	90	154	132		
(µg/L)	Water	43	W	50	150	226	220	Х	Χ	BS >UL	BS failed upper limit
(Mg/ =)	· · · · · · ·		Physis O-5037							20 / 02	Do lanea apper mini
Total PCB 209 (µg/L)	Water	40	W	50	150	145	153	Χ	Χ		
OP Pesticides											
Chlorpyrifos (ng/dry			Physis O-5017								
g)	Sediment	39	W	50	150	141	143	162	140		
			Physis O-5001								
Demeton-s (ng/dry g)	Water	39	W	25	125	22	32	Χ	Χ		
			Physis O-4151								
Total Phorate (µg/L)	Water	39	W	50	150	48	53	X	X		
T (ID)		4.5	Physis O-6022		4=0				.,	DO 11	DO (11 11 11 11 11 11 11 11 11 11 11 11 1
Total Phosmet (µg/L)	Water	43	W Dharain O 0000	50	150	36	X	X	X	BS <ll< td=""><td>BS failed lower limit</td></ll<>	BS failed lower limit
Total Fensulfothion	\Matar	40	Physis O-6002	5 0	150	127	155	V	~		
(µg/L)	Water	42	W	50	100	137	155	X	X		

		_				LCS	LCSD	MS	MSD	Program	
Constituent	Matrix	Event	Lab Batch	LCL	UCL	%Rec.	%Rec.	%Rec.	%Rec.	Qualifier	Comments
Total											
Tetrachlorvinphos		40	Physis O-6002		4=0		400	.,			
(µg/L)	Water	42	W	50	150	153	133	X	X		
Pyrethroid Pesticides											
			Physis O-5017								
Allethrin (ng/dry g)	Sediment	39	W	50	150	107	91	623	767		
			Physis O-5017								
Bifenthrin (ng/dry g)	Sediment	39	W	50	150	77	79	493	499		
Cyfluthrin (µg/L)	Water	43	W4E0777	11	214	76	Χ	249	281		
Cyfluthrin, total			Physis O-5017								
(ng/dry g)	Sediment	39	W	50	150	141	150	818	374		
Cypermethrin (µg/L)	Water	43	W4E0777	20	206	86	Х	251	274		
Cypermethrin, total	· · · · · · · · · · · · · · · · · · ·	10	Physis O-5017		200	- 00		207			
(ng/dry g)	Sediment	39	W	50	150	145	141	805	783		
(g/ s) g/			Physis O-5017								
Danitol (ng/dry g)	Sediment	39	W	50	150	74	75	506	512		
Deltamethrin (ng/dry			Physis O-5017								
g)	Sediment	39	W	50	150	64	65	197	236		
Deltamethrin/Tralome											
thrin (µg/L)	Water	43	W4E0777	0.2	230	60	Χ	245	283		
Dichloran (ng/l)	Water	40	W3K0500	53	161	52	55	Χ	Χ		
Esfenvalerate (ng/dry			Physis O-5017								
g)	Sediment	39	W	50	150	54	56	203	237		
Fenvalerate (ng/dry			Physis O-5017								
g)	Sediment	39	W	50	150	58	61	240	276		
Fenvalerate/Esfenval											
erate (µg/L)	Water	43	W4E0777	32	193	112	Χ	251	285		
			Physis O-5017								
Fluvalinate (ng/dry g)	Sediment	39	W	50	150	49	50	111	139		
L-Cyhalothrin (µg/L)	Water	43	W4E0777	61	209	177	Χ	346	381		
L-Cyhalothrin (ng/dry			Physis O-5017								
g) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sediment	39	W	50	150	64	66	250	274		
Permethrin (µg/L)	Water	43	W4E0777	37	209	116	Х	223	232		

Constituent	Matrix	Event	Lab Batch	LCL	UCL	LCS %Rec.	LCSD %Rec.	MS %Rec.	MSD %Rec.	Program Qualifier	Comments
Permethrin, cis-	Watrix	LVCIII	Physis O-5017	LOL	UCL	/01 \C C.	/01 \C C.	/01 \CC.	/01 \C C.	Qualifier	Comments
(ng/dry g)	Sediment	39	W	50	150	64	78	565	<i>575</i>		
Permethrin, trans-			Physis O-5017								
(ng/dry g)	Sediment	39	W	50	150	63	70	<i>530</i>	566		
Prallethrin (µg/L)	Water	39	W3H0879	54	148	83	Х	147	157	MS >UL	MS failed upper limit
(F-9 ; _/			Physis O-5017								
Prallethrin (ng/dry g)	Sediment	39	W	50	150	84	81	488	562		
			Physis O-5017								
Resmethrin (ng/dry g)	Sediment	39	W	50	150	70	52	325	406		
Sumithrin (µg/L)	Water	39	W3H0879	56	146	133	Χ	172	200	MS >UL	MS failed upper limit
(F. 3)			Physis O-5101								2 3 2 2 1 1
Total Danitol (µg/L)	Water	41	W	50	150	144	164	Χ	Χ		
											BS failed lower limit,
Total Prallethrin			Physis O-6002							BS <ll, est<="" td=""><td>Estimate due to</td></ll,>	Estimate due to
_(µg/L)	Water	42	W	50	150	33	109	X	Χ	BS/BSD	BS/BSD RPD failed
Total Resmethrin			Physis O-5092								
(µg/L)	Water	41	W	50	150	143	151	X	X		
Metals and											
Selenium			Physis E-7036								
Dissolved Iron (µg/L)	Water	40	W	75	125	Х	Х	83	65	MS <ll< td=""><td>MS failed upper limit</td></ll<>	MS failed upper limit
Dissolved Iron (µg/L)	vvalei	40	Physis E-7061	75	123			03	03	IVIO <ll< td=""><td>MS failed upper fiffilt</td></ll<>	MS failed upper fiffilt
Dissolved Iron (µg/L)	Water	41	W	75	125	X	Х	46	44	MS <ll< td=""><td>MS failed upper limit</td></ll<>	MS failed upper limit
Dissolved Selenium	vvator	7.	Physis E-7101	70	120			70		WO VLL	We railed apper in the
(µg/L)	Water	43	W	75	125	X	Χ	124	126	MS >UL	MS failed upper limit
Dissolved Silver			Physis E-5134								
(µg/L)	Water	39	W	75	125	Χ	Χ	69	72		
Dissolved Silver			Physis E-5134								
(µg/L)	Water	39	W	75	125	Χ	Χ	64	59		
Dissolved Silver			Physis E-7036	_							
(µg/L)	Water	40	W	75	125	X	Χ	73	80	MS <ll< td=""><td>MS failed upper limit</td></ll<>	MS failed upper limit
Dissolved Silver			Physis E-7036								
(µg/L)	Water	40	W	75	125	Х	X	77	73	MS <ll< td=""><td>MS failed upper limit</td></ll<>	MS failed upper limit
Dissolved Silver	107	40	Physis E-7036	7.5	405				00	NO 11	
(µg/L)	Water	40	W	75	125	X	Х	65	80	MS <ll< td=""><td>MS failed upper limit</td></ll<>	MS failed upper limit

Constituent	Matrix	Event	Lab Batch	LCL	UCL	LCS %Rec.	LCSD %Rec.	MS %Rec.	MSD %Rec.	Program Qualifier	Comments
Dissolved Silver			Physis E-7052								
(µg/L)	Water	41	W	75	125	X	Χ	76	68	MS <ll< td=""><td>MS failed upper limit</td></ll<>	MS failed upper limit
Dissolved Silver			Physis E-7061								- 11
(µg/L)	Water	41	W	75	125	X	Χ	74	70	MS <ll< td=""><td>MS failed upper limit</td></ll<>	MS failed upper limit
Dissolved Silver (µg/L)	Water	43	Physis E-7101 W	75	125	Х	Х	99	62	MS <ll, est<br="">MS/MSD</ll,>	MS failed lower limit, Estimate due to MS/MSD RPD failed
Dissolved Silver (µg/L)	Water	43	Physis E-7101 W	75	125	X	X	81	69	MS <ll, est<br="">MS/MSD</ll,>	MS failed lower limit, Estimate due to MS/MSD RPD failed
Dissolved Strontium (µg/L)	Water	39	Physis E-5134 W	75	125	Х	Х	175	172		
Dissolved Strontium (μg/L)	Water	39	Physis E-5134 W	75	125	Х	Х	432	448		
Dissolved Strontium (µg/L)	Water	40	Physis E-7036 W	75	125	Х	X	246	178	MS >UL, EST MS/MSD	MS failed upper limit, Estimate due to MS/MSD RPD failed
Dissolved Strontium (µg/L)	Water	40	Physis E-7036 W	75	125	Х	Х	332	152	MS >UL, EST MS/MSD	MS failed upper limit, Estimate due to MS/MSD RPD failed
Dissolved Strontium (μg/L)	Water	41	Physis E-7061 W	75	125	Х	Х	254	260	MS >UL	MS failed upper limit
Dissolved Strontium (μg/L)	Water	42	Physis E-7067 W	75	125	Х	Х	140	133	MS >UL	MS failed upper limit
Dissolved Strontium (µg/L)	Water	43	Physis E-7101 W	75	125	Х	Х	266	229	MS >UL	MS failed upper limit
Dissolved Titanium (µg/L)	Water	40	Physis E-7036 W	75	125	Х	Х	87	46	MS <ll, est<br="">MS/MSD</ll,>	MS failed lower limit, Estimate due to MS/MSD RPD failed
Total Mercury (µg/L)	Water	43	Physis E-6069 W	75	125	96	91	133	147	MS >UL	MS failed upper limit

MS = Matrix Spike
MS = Matrix Spike Duplicate
LCS = Laboratory Control Spike
LCSD = Laboratory Control Spike Duplicate
%Rec = Percent Recovery